Analysis of Multiplexed Flow Cytometric Assays and Toxicogenomic Signatures for Genotoxicity Prediction: A Model Performance and Case Study Approach

IF 2.3 4区 医学 Q3 ENVIRONMENTAL SCIENCES
Tomás Lagunas Jr., Fjodor Melnikov, Gabby Cole, Steve Niu, Estefania Esparza, John Davies, Catrin Hasselgren, Aaron Fullerton, Yu Zhong
{"title":"Analysis of Multiplexed Flow Cytometric Assays and Toxicogenomic Signatures for Genotoxicity Prediction: A Model Performance and Case Study Approach","authors":"Tomás Lagunas Jr.,&nbsp;Fjodor Melnikov,&nbsp;Gabby Cole,&nbsp;Steve Niu,&nbsp;Estefania Esparza,&nbsp;John Davies,&nbsp;Catrin Hasselgren,&nbsp;Aaron Fullerton,&nbsp;Yu Zhong","doi":"10.1002/em.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Genotoxicity assays play a significant role in protecting clinical trial subjects from potential increased risk of genotoxic hazard and cancer during drug development. Traditional genetic toxicology assays typically provide binary outcomes with limited mechanistic insight. This study evaluates machine learning (ML) models based on an in-house implementation of MultiFlow DNA Damage Assay and MicroFlow Assays, and compared these results to previously published Litron assays. Our ML models demonstrated high accuracy, with MultiFlow data achieving 96% balanced accuracy for mode of action (MoA) prediction and 99% for genotoxicity prediction in repeated cross-validation. We collected and interpreted the MicroFlow and MultiFlow data in a dose–response format. The dose–response data enabled us to improve assay inference and model accuracy. In addition, we conducted case studies using toxicogenomic data, including the Toxicogenomic DNA Damage Inducing (TGx-DDI) transcriptomic biomarker and bulk RNA-seq, on a small set of compounds where the MoA is not clearly defined by MultiFlow or MicroFlow. The integration of toxicogenomics provided deeper insights into the molecular mechanisms of genotoxicity, allowing for the identification of specific pathways affected by these compounds. These findings emphasize the importance of careful endpoint selection and data interpretation. Overall, this study enhances the precision of genotoxicity predictions by integrating toxicogenomics, offering a framework for future genotoxicity safety assessments.</p>\n </div>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":"66 6-7","pages":"377-396"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/em.70025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Genotoxicity assays play a significant role in protecting clinical trial subjects from potential increased risk of genotoxic hazard and cancer during drug development. Traditional genetic toxicology assays typically provide binary outcomes with limited mechanistic insight. This study evaluates machine learning (ML) models based on an in-house implementation of MultiFlow DNA Damage Assay and MicroFlow Assays, and compared these results to previously published Litron assays. Our ML models demonstrated high accuracy, with MultiFlow data achieving 96% balanced accuracy for mode of action (MoA) prediction and 99% for genotoxicity prediction in repeated cross-validation. We collected and interpreted the MicroFlow and MultiFlow data in a dose–response format. The dose–response data enabled us to improve assay inference and model accuracy. In addition, we conducted case studies using toxicogenomic data, including the Toxicogenomic DNA Damage Inducing (TGx-DDI) transcriptomic biomarker and bulk RNA-seq, on a small set of compounds where the MoA is not clearly defined by MultiFlow or MicroFlow. The integration of toxicogenomics provided deeper insights into the molecular mechanisms of genotoxicity, allowing for the identification of specific pathways affected by these compounds. These findings emphasize the importance of careful endpoint selection and data interpretation. Overall, this study enhances the precision of genotoxicity predictions by integrating toxicogenomics, offering a framework for future genotoxicity safety assessments.

遗传毒性预测的多重流式细胞分析和毒性基因组学特征分析:模型性能和案例研究方法。
在药物开发过程中,基因毒性检测在保护临床试验受试者免受基因毒性危害和癌症潜在风险增加方面发挥着重要作用。传统的遗传毒理学分析通常提供二元结果,机制见解有限。本研究评估了基于内部实现的MultiFlow DNA损伤分析和MicroFlow分析的机器学习(ML)模型,并将这些结果与之前发表的Litron分析结果进行了比较。我们的ML模型显示出很高的准确性,在重复交叉验证中,MultiFlow数据在作用模式(MoA)预测方面达到96%的平衡精度,在遗传毒性预测方面达到99%的平衡精度。我们以剂量-响应格式收集并解释MicroFlow和MultiFlow数据。剂量-反应数据使我们能够提高分析推断和模型准确性。此外,我们使用毒物基因组学数据进行了案例研究,包括毒物基因组DNA损伤诱导(TGx-DDI)转录组生物标志物和大量RNA-seq,对一小部分化合物进行了研究,这些化合物的MoA没有被MultiFlow或MicroFlow明确定义。毒物基因组学的整合为基因毒性的分子机制提供了更深入的见解,允许识别受这些化合物影响的特定途径。这些发现强调了仔细选择终点和数据解释的重要性。总的来说,本研究通过整合毒物基因组学提高了遗传毒性预测的准确性,为未来的遗传毒性安全性评估提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
10.70%
发文量
52
审稿时长
12-24 weeks
期刊介绍: Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信