{"title":"Pharmacological Evaluation of <i>Angelica keiskei</i> Extract: Molecular Interaction Analysis in Hepatocellular Carcinoma.","authors":"Alka Ashok Singh, Minseok Song, Gun-Do Kim","doi":"10.3390/cimb47060401","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC), the most prevalent primary liver cancer, is the most significant cause of cancer-related death globally, with limited treatment options, including surgical resection, liver transplantation, ablation, chemoembolization, immunotherapy, and radiation. <i>Angelica keiskei</i>, a plant that is rich in chalcones and flavonoids, has demonstrated interesting anticancer properties. This study assesses the pharmacological effects of <i>Angelica keiskei</i> extract on HepG2 cells in order to investigate its efficacy as a therapeutic intervention for HCC. Using in vitro cell culture models, HepG2 cells were treated with different doses of the extract, and its cytotoxic and apoptotic effects were studied. GC-MS analysis revealed the presence of several bioactive compounds, including DDMP, which are likely involved in the observed effects. The MTT assay revealed a considerable, dose-dependent reduction in cell viability, with higher dosages causing notable morphological alterations. An antibody apoptotic array indicated significant changes in apoptotic proteins, specifically IGFBP1, BAD, and Bid. Cluster heatmaps, volcano plots, STRING analysis, Voom-mean variance trends, Glimma plots, and PCA were used to obtain an understanding of the molecular interactions involved. These results suggest that <i>Angelica keiskei</i> extract can cause apoptosis in HepG2 cells, with DDMP appearing as a potentially significant contributor. However, more experimental validation is required to determine the precise molecular mechanisms driving these favorable effects and their clinical implications in HCC.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47060401","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC), the most prevalent primary liver cancer, is the most significant cause of cancer-related death globally, with limited treatment options, including surgical resection, liver transplantation, ablation, chemoembolization, immunotherapy, and radiation. Angelica keiskei, a plant that is rich in chalcones and flavonoids, has demonstrated interesting anticancer properties. This study assesses the pharmacological effects of Angelica keiskei extract on HepG2 cells in order to investigate its efficacy as a therapeutic intervention for HCC. Using in vitro cell culture models, HepG2 cells were treated with different doses of the extract, and its cytotoxic and apoptotic effects were studied. GC-MS analysis revealed the presence of several bioactive compounds, including DDMP, which are likely involved in the observed effects. The MTT assay revealed a considerable, dose-dependent reduction in cell viability, with higher dosages causing notable morphological alterations. An antibody apoptotic array indicated significant changes in apoptotic proteins, specifically IGFBP1, BAD, and Bid. Cluster heatmaps, volcano plots, STRING analysis, Voom-mean variance trends, Glimma plots, and PCA were used to obtain an understanding of the molecular interactions involved. These results suggest that Angelica keiskei extract can cause apoptosis in HepG2 cells, with DDMP appearing as a potentially significant contributor. However, more experimental validation is required to determine the precise molecular mechanisms driving these favorable effects and their clinical implications in HCC.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.