Junxiang Chen, Jin Li, Chunxi Zhang, Xinxin Zhi, Lei Wang, Quncheng Zhang, Pengfei Yu, Fei Tang, Xiankui Zha, Limin Wang, Wenrui Dai, Hongkai Xiong, Jiayuan Sun
{"title":"Deep learning for detection and diagnosis of intrathoracic lymphadenopathy from endobronchial ultrasound multimodal videos: A multi-center study.","authors":"Junxiang Chen, Jin Li, Chunxi Zhang, Xinxin Zhi, Lei Wang, Quncheng Zhang, Pengfei Yu, Fei Tang, Xiankui Zha, Limin Wang, Wenrui Dai, Hongkai Xiong, Jiayuan Sun","doi":"10.1016/j.xcrm.2025.102243","DOIUrl":null,"url":null,"abstract":"<p><p>Convex probe endobronchial ultrasound (CP-EBUS) ultrasonographic features are important for diagnosing intrathoracic lymphadenopathy. Conventional methods for CP-EBUS imaging analysis rely heavily on physician expertise. To overcome this obstacle, we propose a deep learning-aided diagnostic system (AI-CEMA) to automatically select representative images, identify lymph nodes (LNs), and differentiate benign from malignant LNs based on CP-EBUS multimodal videos. AI-CEMA is first trained using 1,006 LNs from a single center and validated with a retrospective study and then demonstrated with a prospective multi-center study on 267 LNs. AI-CEMA achieves an area under the curve (AUC) of 0.8490 (95% confidence interval [CI], 0.8000-0.8980), which is comparable to experienced experts (AUC, 0.7847 [95% CI, 0.7320-0.8373]; p = 0.080). Additionally, AI-CEMA is successfully transferred to a pulmonary lesion diagnosis task and obtains a commendable AUC of 0.8192 (95% CI, 0.7676-0.8709). In conclusion, AI-CEMA shows great potential in clinical diagnosis of intrathoracic lymphadenopathy and pulmonary lesions by providing automated, noninvasive, and expert-level diagnosis.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102243"},"PeriodicalIF":10.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102243","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Convex probe endobronchial ultrasound (CP-EBUS) ultrasonographic features are important for diagnosing intrathoracic lymphadenopathy. Conventional methods for CP-EBUS imaging analysis rely heavily on physician expertise. To overcome this obstacle, we propose a deep learning-aided diagnostic system (AI-CEMA) to automatically select representative images, identify lymph nodes (LNs), and differentiate benign from malignant LNs based on CP-EBUS multimodal videos. AI-CEMA is first trained using 1,006 LNs from a single center and validated with a retrospective study and then demonstrated with a prospective multi-center study on 267 LNs. AI-CEMA achieves an area under the curve (AUC) of 0.8490 (95% confidence interval [CI], 0.8000-0.8980), which is comparable to experienced experts (AUC, 0.7847 [95% CI, 0.7320-0.8373]; p = 0.080). Additionally, AI-CEMA is successfully transferred to a pulmonary lesion diagnosis task and obtains a commendable AUC of 0.8192 (95% CI, 0.7676-0.8709). In conclusion, AI-CEMA shows great potential in clinical diagnosis of intrathoracic lymphadenopathy and pulmonary lesions by providing automated, noninvasive, and expert-level diagnosis.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.