Thiago S Moreira, Nicholas J Burgraff, Ana C Takakura, Luiz M Oliveira, Emmanuel Veríssimo de Araujo, Steven Guan, Jan-Marino Ramirez
{"title":"Functional modulation of retrotrapezoid neurons drives fentanyl-induced respiratory depression.","authors":"Thiago S Moreira, Nicholas J Burgraff, Ana C Takakura, Luiz M Oliveira, Emmanuel Veríssimo de Araujo, Steven Guan, Jan-Marino Ramirez","doi":"10.1152/ajplung.00025.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b<sup>+</sup>/Neuromedin-B (<i>Nmb</i>) propriobulbar neurons. These neurons, stimulated by CO<sub>2</sub>/H<sup>+</sup>, regulate breathing to prevent respiratory acidosis. Since the RTN shows limited expression of opioid-receptors, we expected that opioid-induced hypoventilation should activate these neurons to restore ventilation and stabilize arterial blood gases. However, the ability of the RTN to stimulate ventilation during OIRD has never been tested. We used optogenetic and pharmacogenetic approaches, to activate and inhibit RTN Phox2b<sup>+</sup>/<i>Nmb</i><sup>+</sup> neurons before and after fentanyl administration. As expected, fentanyl (500 μg/kg, ip) suppressed respiratory rate and destabilized breathing. Before fentanyl, optogenetic stimulation of Phox2b<sup>+</sup>/<i>Nmb</i><sup>+</sup> or chemogenetic inhibition of <i>Nmb</i><sup>+</sup> cells increased and decreased breathing activity, respectively. Surprisingly, optogenetic stimulation after fentanyl administration caused a significantly greater increase in breathing activity compared to pre-fentanyl levels. By contrast chemogenetic inhibition of RTN <i>Nmb</i> neurons caused profound hypoventilation and breathing instability after fentanyl. The results suggest that fentanyl does not inhibit the ability of Phox2b<sup>+</sup><i>/Nmb</i><sup>+</sup> cells within the RTN region to stimulate breathing. Thus, this study highlights the potential of stimulating RTN neurons as a possible therapeutic approach to restore respiratory function in cases of OIRD.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00025.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b+/Neuromedin-B (Nmb) propriobulbar neurons. These neurons, stimulated by CO2/H+, regulate breathing to prevent respiratory acidosis. Since the RTN shows limited expression of opioid-receptors, we expected that opioid-induced hypoventilation should activate these neurons to restore ventilation and stabilize arterial blood gases. However, the ability of the RTN to stimulate ventilation during OIRD has never been tested. We used optogenetic and pharmacogenetic approaches, to activate and inhibit RTN Phox2b+/Nmb+ neurons before and after fentanyl administration. As expected, fentanyl (500 μg/kg, ip) suppressed respiratory rate and destabilized breathing. Before fentanyl, optogenetic stimulation of Phox2b+/Nmb+ or chemogenetic inhibition of Nmb+ cells increased and decreased breathing activity, respectively. Surprisingly, optogenetic stimulation after fentanyl administration caused a significantly greater increase in breathing activity compared to pre-fentanyl levels. By contrast chemogenetic inhibition of RTN Nmb neurons caused profound hypoventilation and breathing instability after fentanyl. The results suggest that fentanyl does not inhibit the ability of Phox2b+/Nmb+ cells within the RTN region to stimulate breathing. Thus, this study highlights the potential of stimulating RTN neurons as a possible therapeutic approach to restore respiratory function in cases of OIRD.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.