{"title":"Real-Time Multi-Train Trajectory Optimisation and Delay Recovery Using SH-MPC Integrated With Genetic Algorithms","authors":"Zhu Li, Ning Zhao, Clive Roberts, Lei Chen","doi":"10.1049/itr2.70053","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a dynamic optimisation system that enhances the management of train delays within automatic train operation (ATO) systems, utilising an innovative integration of shrinking-horizon model predictive control (SH-MPC) with genetic algorithms (GA). This research focuses on optimising train trajectories to efficiently handle various delay scenarios, from temporary speed restrictions to significant halts, ensuring both energy efficiency and punctuality. The proposed SH-MPC addresses diverse delay situations in real time, while the integration with GA overcomes the limitations of long horizon forecasting. The simulation of multiple trains on a real route demonstrates the robustness of the proposed system in adhering to scheduled timetables while reducing energy consumption.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a dynamic optimisation system that enhances the management of train delays within automatic train operation (ATO) systems, utilising an innovative integration of shrinking-horizon model predictive control (SH-MPC) with genetic algorithms (GA). This research focuses on optimising train trajectories to efficiently handle various delay scenarios, from temporary speed restrictions to significant halts, ensuring both energy efficiency and punctuality. The proposed SH-MPC addresses diverse delay situations in real time, while the integration with GA overcomes the limitations of long horizon forecasting. The simulation of multiple trains on a real route demonstrates the robustness of the proposed system in adhering to scheduled timetables while reducing energy consumption.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf