Yan Xiang;Xiaochen Yuan;Kaiqi Zhao;Tong Liu;Zhiyao Xie;Guoheng Huang;Jianqing Li
{"title":"Image Manipulation Localization Using Dual-Shallow Feature Pyramid Fusion and Boundary Contextual Incoherence Enhancement","authors":"Yan Xiang;Xiaochen Yuan;Kaiqi Zhao;Tong Liu;Zhiyao Xie;Guoheng Huang;Jianqing Li","doi":"10.1109/TETCI.2024.3500025","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel end-to-end network for Image Manipulation Localization (IML) comprising three modules: feature fusion, encoder, and decoder. To address the limitations of current DNN-based IML algorithms in accessing global features and segmenting tampered edges, we propose a Dual-shallow Feature Pyramid Fusion (DFPF) module. The DFPF module integrates semantic and texture features through a bidirectional pathway, forming RGB Feature Pyramids (RGBFP) and Local Textual Feature Pyramids (LTFP) using dual Hybrid ResNet50s in a ’Siamese' configuration. These feature pyramids are merged via multi-scale fusion to enhance global pyramid features for decoding. The LTFP branch includes a Pre-processing Block, Parallel Multi-Scale Convolution (PMSC), or Channel Split High-frequency Convolution (CSHC) to capture local textual features and subtle manipulation traces. The Encoder employs Transformer layers for robust global representations. At the same time, the Decoder uses Cascaded Boundary Context Inconsistent Enhancement (BCIE) Blocks to reconstruct a coarse-to-fine binary mask, enhancing texture inconsistencies at manipulated region boundaries. Additionally, we introduce an automated method for generating a large-scale forgery dataset via Photoshop Scripting, reducing labor costs. Our model effectively locates tampered regions of various shapes and sizes, improving boundary anomaly detection. Extensive experimental results demonstrate that our method significantly outperforms existing state-of-the-art models.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 4","pages":"2858-2868"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10771742/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel end-to-end network for Image Manipulation Localization (IML) comprising three modules: feature fusion, encoder, and decoder. To address the limitations of current DNN-based IML algorithms in accessing global features and segmenting tampered edges, we propose a Dual-shallow Feature Pyramid Fusion (DFPF) module. The DFPF module integrates semantic and texture features through a bidirectional pathway, forming RGB Feature Pyramids (RGBFP) and Local Textual Feature Pyramids (LTFP) using dual Hybrid ResNet50s in a ’Siamese' configuration. These feature pyramids are merged via multi-scale fusion to enhance global pyramid features for decoding. The LTFP branch includes a Pre-processing Block, Parallel Multi-Scale Convolution (PMSC), or Channel Split High-frequency Convolution (CSHC) to capture local textual features and subtle manipulation traces. The Encoder employs Transformer layers for robust global representations. At the same time, the Decoder uses Cascaded Boundary Context Inconsistent Enhancement (BCIE) Blocks to reconstruct a coarse-to-fine binary mask, enhancing texture inconsistencies at manipulated region boundaries. Additionally, we introduce an automated method for generating a large-scale forgery dataset via Photoshop Scripting, reducing labor costs. Our model effectively locates tampered regions of various shapes and sizes, improving boundary anomaly detection. Extensive experimental results demonstrate that our method significantly outperforms existing state-of-the-art models.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.