A corrected L1 scheme for solving a tempered subdiffusion equation with nonsmooth data

IF 1.3 Q2 MATHEMATICS, APPLIED
Can Li , Xin Wang , Yubin Yan , Zexin Hou
{"title":"A corrected L1 scheme for solving a tempered subdiffusion equation with nonsmooth data","authors":"Can Li ,&nbsp;Xin Wang ,&nbsp;Yubin Yan ,&nbsp;Zexin Hou","doi":"10.1016/j.rinam.2025.100613","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100613"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.
求解具有非光滑数据的回火次扩散方程的修正L1格式
本文研究了一类具有非光滑数据的回火次扩散方程的时间半离散格式。由于解的正则性较低,直接采用L1时间步进格式对缓化分数阶导数进行离散化时,不能得到最优收敛速率。通过在初始时间步长引入校正项,我们提出了一种校正L1格式,使其恢复到最优收敛速率。理论误差估计和数值实验验证了改进的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信