{"title":"A corrected L1 scheme for solving a tempered subdiffusion equation with nonsmooth data","authors":"Can Li , Xin Wang , Yubin Yan , Zexin Hou","doi":"10.1016/j.rinam.2025.100613","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100613"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.