Learning deep generative models based on binomial log-likelihood

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hwichang Jeong , Insung Kong , Yongdai Kim
{"title":"Learning deep generative models based on binomial log-likelihood","authors":"Hwichang Jeong ,&nbsp;Insung Kong ,&nbsp;Yongdai Kim","doi":"10.1016/j.neucom.2025.131009","DOIUrl":null,"url":null,"abstract":"<div><div>Likelihood-based learning algorithms for deep generative models mostly use the Gaussian log-likelihood. One notable exception is the binomial log-likelihood used in the Wasserstein autoencoder; however, it is not commonly used in practice because it does not generalize well. In this paper, we reconsider the binomial log-likelihood for learning deep generative models and study its theoretical properties. We propose two modifications to the original binomial log-likelihood and derive the convergence rates of the corresponding maximum likelihood estimators. These theoretical results explain why the original binomial log-likelihood performs poorly. In addition, motivated by the modified binomial log-likelihood, we propose a parametric heterogeneous Gaussian log-likelihood, which is novel in learning deep generative models. By analyzing various benchmark image datasets, we show that the proposed parametric heterogeneous Gaussian log-likelihood outperforms the standard homogeneous Gaussian log-likelihood. Additionally, we provide several pieces of evidence to explain why the proposed heterogeneous Gaussian log-likelihood works better than others.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131009"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016819","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Likelihood-based learning algorithms for deep generative models mostly use the Gaussian log-likelihood. One notable exception is the binomial log-likelihood used in the Wasserstein autoencoder; however, it is not commonly used in practice because it does not generalize well. In this paper, we reconsider the binomial log-likelihood for learning deep generative models and study its theoretical properties. We propose two modifications to the original binomial log-likelihood and derive the convergence rates of the corresponding maximum likelihood estimators. These theoretical results explain why the original binomial log-likelihood performs poorly. In addition, motivated by the modified binomial log-likelihood, we propose a parametric heterogeneous Gaussian log-likelihood, which is novel in learning deep generative models. By analyzing various benchmark image datasets, we show that the proposed parametric heterogeneous Gaussian log-likelihood outperforms the standard homogeneous Gaussian log-likelihood. Additionally, we provide several pieces of evidence to explain why the proposed heterogeneous Gaussian log-likelihood works better than others.
学习基于二项对数似然的深度生成模型
基于似然的深度生成模型学习算法大多使用高斯对数似然。一个值得注意的例外是在Wasserstein自动编码器中使用的二项对数似然;然而,它在实践中并不常用,因为它不能很好地概括。在本文中,我们重新考虑了二项对数似然学习深度生成模型,并研究了它的理论性质。我们对原始的二项式对数似然进行了两种修正,并推导了相应的极大似然估计的收敛速率。这些理论结果解释了为什么原始的二项对数似然表现不佳。此外,在改进的二项对数似然的激励下,我们提出了一种参数异构高斯对数似然,这是学习深度生成模型的新方法。通过分析各种基准图像数据集,我们证明了所提出的参数异构高斯对数似然优于标准齐次高斯对数似然。此外,我们提供了一些证据来解释为什么提出的异质高斯对数似然比其他方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信