Joint super-resolution and inverse tone-mapping: A feature decomposition aggregation network and a new benchmark

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gang Xu , Ao Shen , Yuchen Yang , Xiantong Zhen , Wei Chen , Jun Xu
{"title":"Joint super-resolution and inverse tone-mapping: A feature decomposition aggregation network and a new benchmark","authors":"Gang Xu ,&nbsp;Ao Shen ,&nbsp;Yuchen Yang ,&nbsp;Xiantong Zhen ,&nbsp;Wei Chen ,&nbsp;Jun Xu","doi":"10.1016/j.neucom.2025.131050","DOIUrl":null,"url":null,"abstract":"<div><div>Joint Super-Resolution and Inverse Tone-Mapping (joint SR-ITM) aims to increase the resolution and dynamic range of low-resolution and standard dynamic range images. Recent networks mainly resort to image decomposition techniques with complex multi-branch architectures. However, the fixed decomposition techniques would largely restrict their power on versatile images. To exploit the potential power of decomposition mechanism, in this paper, we generalize it from the image domain to the broader feature domain. To this end, we propose a lightweight Feature Decomposition Aggregation Network (FDAN). In particular, we design a Feature Decomposition Block (FDB) to achieve learnable separation of detail and base feature maps, and develop a Hierarchical Feature Decomposition Group by cascading FDBs for powerful multi-level feature decomposition. Moreover, for better evaluation, we collect a large-scale dataset for joint SR-ITM, <em>i.e.</em>, SRITM-4K, which provides versatile scenarios for robust model training and evaluation. Experimental results on two benchmark datasets demonstrate that our FDAN is efficient and outperforms state-of-the-art methods on joint SR-ITM. The code of our FDAN and the SRITM-4K dataset are available at <span><span>https://github.com/CS-GangXu/FDAN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131050"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225017229","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Joint Super-Resolution and Inverse Tone-Mapping (joint SR-ITM) aims to increase the resolution and dynamic range of low-resolution and standard dynamic range images. Recent networks mainly resort to image decomposition techniques with complex multi-branch architectures. However, the fixed decomposition techniques would largely restrict their power on versatile images. To exploit the potential power of decomposition mechanism, in this paper, we generalize it from the image domain to the broader feature domain. To this end, we propose a lightweight Feature Decomposition Aggregation Network (FDAN). In particular, we design a Feature Decomposition Block (FDB) to achieve learnable separation of detail and base feature maps, and develop a Hierarchical Feature Decomposition Group by cascading FDBs for powerful multi-level feature decomposition. Moreover, for better evaluation, we collect a large-scale dataset for joint SR-ITM, i.e., SRITM-4K, which provides versatile scenarios for robust model training and evaluation. Experimental results on two benchmark datasets demonstrate that our FDAN is efficient and outperforms state-of-the-art methods on joint SR-ITM. The code of our FDAN and the SRITM-4K dataset are available at https://github.com/CS-GangXu/FDAN.
联合超分辨和逆色调映射:一种特征分解聚合网络和新的基准
联合超分辨率和逆色调映射(Joint SR-ITM)旨在提高低分辨率和标准动态范围图像的分辨率和动态范围。目前的网络主要采用复杂多分支结构的图像分解技术。然而,固定的分解技术在很大程度上限制了它们对多用途图像的处理能力。为了挖掘分解机制的潜在力量,本文将其从图像域推广到更广泛的特征域。为此,我们提出了一种轻量级的特征分解聚合网络(FDAN)。特别地,我们设计了一个特征分解块(FDB)来实现细节特征图和基本特征图的可学习分离,并通过层叠FDB开发了一个分层特征分解组,用于强大的多层次特征分解。此外,为了更好地进行评估,我们收集了联合SR-ITM的大规模数据集,即SRITM-4K,该数据集为鲁棒模型训练和评估提供了多种场景。在两个基准数据集上的实验结果表明,我们的FDAN是有效的,并且优于目前最先进的联合SR-ITM方法。我们的FDAN和SRITM-4K数据集的代码可在https://github.com/CS-GangXu/FDAN上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信