SEArch: A self-evolving framework for network architecture optimization

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yongqing Liang, Dawei Xiang, Xin Li
{"title":"SEArch: A self-evolving framework for network architecture optimization","authors":"Yongqing Liang,&nbsp;Dawei Xiang,&nbsp;Xin Li","doi":"10.1016/j.neucom.2025.130980","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies a fundamental network optimization problem that finds a network architecture with optimal performance (low loss) under given resource budgets (small number of parameters and/or fast inference). Unlike existing network optimization approaches such as network pruning, knowledge distillation (KD), and network architecture search (NAS), in this work we introduce a self-evolving pipeline to perform network optimization. In this framework, a simple network iteratively and adaptively modifies its structure by using the guidance from a teacher network, until it reaches the resource budget. An attention module is introduced to transfer the knowledge from the teacher network to the student network. A splitting edge scheme is designed to help the student model find an optimal macro architecture. The proposed framework combines the advantages of pruning, KD, and NAS, and hence, can efficiently generate networks with flexible structure and desirable performance. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our framework achieves great performance in this network architecture optimization task.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130980"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016522","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a fundamental network optimization problem that finds a network architecture with optimal performance (low loss) under given resource budgets (small number of parameters and/or fast inference). Unlike existing network optimization approaches such as network pruning, knowledge distillation (KD), and network architecture search (NAS), in this work we introduce a self-evolving pipeline to perform network optimization. In this framework, a simple network iteratively and adaptively modifies its structure by using the guidance from a teacher network, until it reaches the resource budget. An attention module is introduced to transfer the knowledge from the teacher network to the student network. A splitting edge scheme is designed to help the student model find an optimal macro architecture. The proposed framework combines the advantages of pruning, KD, and NAS, and hence, can efficiently generate networks with flexible structure and desirable performance. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our framework achieves great performance in this network architecture optimization task.

Abstract Image

SEArch:一个自进化的网络架构优化框架
本文研究了一个基本的网络优化问题,即在给定的资源预算(少量参数和/或快速推理)下,寻找具有最优性能(低损耗)的网络架构。与现有的网络优化方法(如网络修剪、知识蒸馏(KD)和网络架构搜索(NAS))不同,在这项工作中,我们引入了一个自进化的管道来执行网络优化。在这个框架中,一个简单的网络利用教师网络的指导,迭代地、自适应地修改其结构,直到达到资源预算。引入注意力模块,将教师网络中的知识转移到学生网络中。设计了一种分裂边缘方案,帮助学生模型找到最优的宏观结构。该框架结合了剪枝、KD和NAS的优点,能够有效地生成结构灵活、性能理想的网络。在CIFAR-10、CIFAR-100和ImageNet上的大量实验表明,我们的框架在网络架构优化任务中取得了很好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信