CCDSReFormer: Traffic flow prediction with a criss-crossed dual-stream enhanced rectified transformer model

IF 14.5 Q1 TRANSPORTATION
Zhiqi Shao , Michael G.H. Bell , Ze Wang , D. Glenn Geers , Xusheng Yao , Junbin Gao
{"title":"CCDSReFormer: Traffic flow prediction with a criss-crossed dual-stream enhanced rectified transformer model","authors":"Zhiqi Shao ,&nbsp;Michael G.H. Bell ,&nbsp;Ze Wang ,&nbsp;D. Glenn Geers ,&nbsp;Xusheng Yao ,&nbsp;Junbin Gao","doi":"10.1016/j.commtr.2025.100189","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate, efficient, and rapid traffic forecasting is essential for intelligent transportation systems and plays a pivotal role in urban traffic planning, management, and control. While existing spatiotemporal transformer models have demonstrated effectiveness in traffic flow prediction, they face notable challenges in achieving a balance between computational efficiency and accuracy. Additionally, they often prioritize global trends over local time series information and treat spatial and temporal data separately, limiting their ability to capture complex spatiotemporal interactions. To overcome these limitations, we propose the criss-crossed dual-stream enhanced rectified transformer (CCDSReFormer). This model introduces a novel rectified linear self-attention (ReLSA) mechanism combined with enhanced convolution (EnCov) to reduce computational overhead and sharpen the local feature focus. Furthermore, our cross-learning strategy seamlessly integrates spatial and temporal data, improving the model's ability to capture intricate traffic dynamics. Extensive experiments on six real-world datasets show that CCDSReFormer outperforms existing models in both accuracy and efficiency. An ablation study further validates the contributions of each component, confirming the model's superior ability to forecast traffic flow accurately and efficiently.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100189"},"PeriodicalIF":14.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate, efficient, and rapid traffic forecasting is essential for intelligent transportation systems and plays a pivotal role in urban traffic planning, management, and control. While existing spatiotemporal transformer models have demonstrated effectiveness in traffic flow prediction, they face notable challenges in achieving a balance between computational efficiency and accuracy. Additionally, they often prioritize global trends over local time series information and treat spatial and temporal data separately, limiting their ability to capture complex spatiotemporal interactions. To overcome these limitations, we propose the criss-crossed dual-stream enhanced rectified transformer (CCDSReFormer). This model introduces a novel rectified linear self-attention (ReLSA) mechanism combined with enhanced convolution (EnCov) to reduce computational overhead and sharpen the local feature focus. Furthermore, our cross-learning strategy seamlessly integrates spatial and temporal data, improving the model's ability to capture intricate traffic dynamics. Extensive experiments on six real-world datasets show that CCDSReFormer outperforms existing models in both accuracy and efficiency. An ablation study further validates the contributions of each component, confirming the model's superior ability to forecast traffic flow accurately and efficiently.
CCDSReFormer:交通流量预测与交叉双流增强整流变压器模型
准确、高效、快速的交通预测是智能交通系统的基础,在城市交通规划、管理和控制中起着至关重要的作用。虽然现有的时空变换模型在交通流预测中已经证明了有效性,但它们在实现计算效率和准确性之间的平衡方面面临着显著的挑战。此外,它们往往优先考虑全球趋势而不是本地时间序列信息,并分别处理空间和时间数据,从而限制了它们捕捉复杂时空相互作用的能力。为了克服这些限制,我们提出了交叉双流增强整流变压器(CCDSReFormer)。该模型引入了一种新的校正线性自注意(ReLSA)机制,结合增强卷积(EnCov)来减少计算开销并锐化局部特征焦点。此外,我们的交叉学习策略无缝地集成了空间和时间数据,提高了模型捕捉复杂交通动态的能力。在六个真实数据集上的大量实验表明,CCDSReFormer在精度和效率方面都优于现有模型。消融研究进一步验证了各分量的贡献,证实了该模型准确有效地预测交通流量的优越能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信