A decomposition algorithm using multiple linear approximations to solve integrated design and scheduling optimization frameworks — case study of nuclear based co-production of electricity and hydrogen

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Taemin Heo , Dharik S. Mallapragada , Ruaridh Macdonald
{"title":"A decomposition algorithm using multiple linear approximations to solve integrated design and scheduling optimization frameworks — case study of nuclear based co-production of electricity and hydrogen","authors":"Taemin Heo ,&nbsp;Dharik S. Mallapragada ,&nbsp;Ruaridh Macdonald","doi":"10.1016/j.compchemeng.2025.109213","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a modeling framework for optimizing integrated design and scheduling (IDS) of grid-interactive facilities with heat and mass integration and multiple co-products. Using a novel decomposition algorithm utilizing multiple linear approximations, the framework enables efficient optimization over 8760 h of annual operation while including a large number of nonlinear constraints, improving scalability and performance compared to previous methods. We apply the framework to optimize a nuclear power plant (NPP) and high-temperature steam electrolysis (HTSE) co-production system. The case study shows that co-production can be cost-competitive with standalone HTSE under realistic scenarios. We perform a sensitivity analysis of the cost of H<sub>2</sub> as a function of HTSE capital costs and current density limits, which suggests that early R&amp;D should focus on increasing current density to 3–4 A/cm<sup>2</sup> before targeting cost reductions.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"202 ","pages":"Article 109213"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425002170","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a modeling framework for optimizing integrated design and scheduling (IDS) of grid-interactive facilities with heat and mass integration and multiple co-products. Using a novel decomposition algorithm utilizing multiple linear approximations, the framework enables efficient optimization over 8760 h of annual operation while including a large number of nonlinear constraints, improving scalability and performance compared to previous methods. We apply the framework to optimize a nuclear power plant (NPP) and high-temperature steam electrolysis (HTSE) co-production system. The case study shows that co-production can be cost-competitive with standalone HTSE under realistic scenarios. We perform a sensitivity analysis of the cost of H2 as a function of HTSE capital costs and current density limits, which suggests that early R&D should focus on increasing current density to 3–4 A/cm2 before targeting cost reductions.
一种利用多重线性逼近求解集成设计和调度优化框架的分解算法——以核能电氢联产为例
提出了一种热质集成、多副产物并网设施集成设计与调度优化的建模框架。该框架采用了一种利用多重线性近似的新型分解算法,能够在8760小时的年运行时间内实现高效优化,同时包含大量非线性约束,与以前的方法相比,提高了可扩展性和性能。我们将该框架应用于一个核电站(NPP)和高温蒸汽电解(HTSE)联产系统的优化。案例研究表明,在现实情况下,联合生产与独立HTSE相比具有成本竞争力。我们对H2的成本进行了敏感性分析,将其作为HTSE资本成本和电流密度限制的函数,这表明,在降低成本之前,早期的研发应侧重于将电流密度提高到3-4 a /cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信