Two-stage real-world image dehazing method using physics-based dehazing network and contrastive learning generative adversarial network

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huaqiang Xie , Kangwei Wang , Li Zhu , Jie Xie , Cheng Wu , Jie Sheng , Jin Zhang
{"title":"Two-stage real-world image dehazing method using physics-based dehazing network and contrastive learning generative adversarial network","authors":"Huaqiang Xie ,&nbsp;Kangwei Wang ,&nbsp;Li Zhu ,&nbsp;Jie Xie ,&nbsp;Cheng Wu ,&nbsp;Jie Sheng ,&nbsp;Jin Zhang","doi":"10.1016/j.neucom.2025.131002","DOIUrl":null,"url":null,"abstract":"<div><div>Real-world image dehazing remains a challenging task due to the ill-posed nature of haze formation and the significant domain gap between synthetic and real foggy scenes. In this paper, a novel two-stage framework is proposed, integrating a Physics-Based Dehazing Network (PBDNet) with a Contrastive Learning-based Generative Adversarial Network (CLGAN). In the first stage, PBDNet is trained on synthetic hazy-clean pairs using the atmospheric scattering model, extracting interpretable and transferable physical priors. In the second stage, CLGAN leverages these priors to guide unpaired image translation between real hazy and clean images. The integration of contrastive learning further enhances the alignment of fog-invariant representations, improving dehazing stability and generalization. Extensive experiments demonstrate the effectiveness of our approach. On the SOTS-outdoor dataset, our method achieves a PSNR of 34.13 dB and SSIM of 0.9863, surpassing state-of-the-art methods. On the real-world RTTS dataset, it achieves a BRISQUE score of 17.54, indicating superior perceptual quality. Additional evaluations using FADE metrics and object detection tasks confirm the practical value of our method in real-world scenarios. These results validate the effectiveness of combining physics-based priors with contrastive learning for robust real-world dehazing.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131002"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016741","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world image dehazing remains a challenging task due to the ill-posed nature of haze formation and the significant domain gap between synthetic and real foggy scenes. In this paper, a novel two-stage framework is proposed, integrating a Physics-Based Dehazing Network (PBDNet) with a Contrastive Learning-based Generative Adversarial Network (CLGAN). In the first stage, PBDNet is trained on synthetic hazy-clean pairs using the atmospheric scattering model, extracting interpretable and transferable physical priors. In the second stage, CLGAN leverages these priors to guide unpaired image translation between real hazy and clean images. The integration of contrastive learning further enhances the alignment of fog-invariant representations, improving dehazing stability and generalization. Extensive experiments demonstrate the effectiveness of our approach. On the SOTS-outdoor dataset, our method achieves a PSNR of 34.13 dB and SSIM of 0.9863, surpassing state-of-the-art methods. On the real-world RTTS dataset, it achieves a BRISQUE score of 17.54, indicating superior perceptual quality. Additional evaluations using FADE metrics and object detection tasks confirm the practical value of our method in real-world scenarios. These results validate the effectiveness of combining physics-based priors with contrastive learning for robust real-world dehazing.
基于物理去雾网络和对比学习生成对抗网络的两阶段真实世界图像去雾方法
现实世界的图像去雾仍然是一个具有挑战性的任务,由于雾形成的病态性质和合成和真实雾场景之间的显著域差距。本文提出了一种新的两阶段框架,将基于物理的去雾网络(PBDNet)与基于对比学习的生成对抗网络(CLGAN)相结合。在第一阶段,PBDNet使用大气散射模型对合成的模糊-清洁对进行训练,提取可解释和可转移的物理先验。在第二阶段,CLGAN利用这些先验来指导真实模糊图像和干净图像之间的非配对图像转换。对比学习的整合进一步增强了雾不变表征的一致性,提高了除雾稳定性和泛化性。大量的实验证明了我们方法的有效性。在SOTS-outdoor数据集上,我们的方法实现了34.13 dB的PSNR和0.9863的SSIM,超过了现有的方法。在现实世界的RTTS数据集上,它的BRISQUE得分为17.54,表明它的感知质量很好。使用FADE指标和目标检测任务的附加评估确认了我们的方法在现实场景中的实用价值。这些结果验证了将基于物理的先验与对比学习相结合用于鲁棒现实世界除雾的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信