A comparison of modeling approaches for static and dynamic prediction of central-line bloodstream infections using electronic health records (part 1): regression models.

IF 2.6
Shan Gao, Elena Albu, Hein Putter, Pieter Stijnen, Frank E Rademakers, Veerle Cossey, Yves Debaveye, Christel Janssens, Ben Van Calster, Laure Wynants
{"title":"A comparison of modeling approaches for static and dynamic prediction of central-line bloodstream infections using electronic health records (part 1): regression models.","authors":"Shan Gao, Elena Albu, Hein Putter, Pieter Stijnen, Frank E Rademakers, Veerle Cossey, Yves Debaveye, Christel Janssens, Ben Van Calster, Laure Wynants","doi":"10.1186/s41512-025-00199-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hospitals register information in the electronic health records (EHRs) continuously until discharge or death. As such, there is no censoring for in-hospital outcomes. We aimed to compare different static and dynamic regression modeling approaches to predict central line-associated bloodstream infections (CLABSIs) in EHR while accounting for competing events precluding CLABSI.</p><p><strong>Methods: </strong>We analyzed data from 30,862 catheter episodes at University Hospitals Leuven from 2012 and 2013 to predict 7-day risk of CLABSI. Competing events are discharge and death. Static models using information at catheter onset included logistic, multinomial logistic, Cox, cause-specific hazard, and Fine-Gray regression. Dynamic models updated predictions daily up to 30 days after catheter onset (i.e., landmarks 0 to 30 days) and included landmark supermodel extensions of the static models, separate Fine-Gray models per landmark time, and regularized multi-task learning (RMTL). Model performance was assessed using 100 random 2:1 train-test splits.</p><p><strong>Results: </strong>The Cox model performed worst of all static models in terms of area under the receiver operating characteristic curve (AUROC) and calibration. Dynamic landmark supermodels reached peak AUROCs between 0.741 and 0.747 at landmark 5. The Cox landmark supermodel had the worst AUROCs (≤ 0.731) and calibration up to landmark 7. Separate Fine-Gray models per landmark performed worst for later landmarks, when the number of patients at risk was low.</p><p><strong>Conclusions: </strong>Categorical and time-to-event approaches had similar performance in the static and dynamic settings, except Cox models. Ignoring competing risks caused problems for risk prediction in the time-to-event framework (Cox), but not in the categorical framework (logistic regression).</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"9 1","pages":"20"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-025-00199-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hospitals register information in the electronic health records (EHRs) continuously until discharge or death. As such, there is no censoring for in-hospital outcomes. We aimed to compare different static and dynamic regression modeling approaches to predict central line-associated bloodstream infections (CLABSIs) in EHR while accounting for competing events precluding CLABSI.

Methods: We analyzed data from 30,862 catheter episodes at University Hospitals Leuven from 2012 and 2013 to predict 7-day risk of CLABSI. Competing events are discharge and death. Static models using information at catheter onset included logistic, multinomial logistic, Cox, cause-specific hazard, and Fine-Gray regression. Dynamic models updated predictions daily up to 30 days after catheter onset (i.e., landmarks 0 to 30 days) and included landmark supermodel extensions of the static models, separate Fine-Gray models per landmark time, and regularized multi-task learning (RMTL). Model performance was assessed using 100 random 2:1 train-test splits.

Results: The Cox model performed worst of all static models in terms of area under the receiver operating characteristic curve (AUROC) and calibration. Dynamic landmark supermodels reached peak AUROCs between 0.741 and 0.747 at landmark 5. The Cox landmark supermodel had the worst AUROCs (≤ 0.731) and calibration up to landmark 7. Separate Fine-Gray models per landmark performed worst for later landmarks, when the number of patients at risk was low.

Conclusions: Categorical and time-to-event approaches had similar performance in the static and dynamic settings, except Cox models. Ignoring competing risks caused problems for risk prediction in the time-to-event framework (Cox), but not in the categorical framework (logistic regression).

使用电子健康记录对中心静脉血流感染进行静态和动态预测的建模方法比较(第1部分):回归模型。
背景:医院持续在电子健康记录(EHRs)中登记信息,直到出院或死亡。因此,对住院结果没有审查。我们的目的是比较不同的静态和动态回归建模方法来预测EHR中中心线相关血流感染(CLABSI),同时考虑排除CLABSI的竞争事件。方法:我们分析了2012年至2013年鲁汶大学医院30,862例导管发作的数据,以预测CLABSI的7天风险。竞争项目是放电和死亡。使用导管开始时信息的静态模型包括logistic、多项logistic、Cox、病因特异性风险和Fine-Gray回归。动态模型每天更新预测,直至导管开始后30天(即里程碑0至30天),并包括静态模型的里程碑超级模型扩展,每个里程碑时间单独的Fine-Gray模型和正则化多任务学习(RMTL)。使用100个随机2:1训练测试分割来评估模型性能。结果:Cox模型在受试者工作特征曲线下面积(AUROC)和校准方面是所有静态模型中表现最差的。动态地标超模的auroc峰值在0.741 - 0.747之间。Cox地标超模的auroc最差(≤0.731),校准至地标7。当风险患者数量较低时,每个路标单独的Fine-Gray模型在较晚的路标中表现最差。结论:除了Cox模型外,分类和事件时间方法在静态和动态环境下具有相似的性能。忽略竞争风险会在事件时间框架(Cox)中导致风险预测问题,但在分类框架(逻辑回归)中不会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信