miR-365-3p Regulates Gastrointestinal Dysfunction in Diabetes Mellitus Rats via the TLR4/MyD88/NF-κB Pathway.

IF 2.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular and Cellular Biology Pub Date : 2025-01-01 Epub Date: 2025-07-22 DOI:10.1080/10985549.2025.2532581
Jiao Xiao, Bin Gao, Yan Xiao, Xiangjie Liu
{"title":"miR-365-3p Regulates Gastrointestinal Dysfunction in Diabetes Mellitus Rats via the TLR4/MyD88/NF-κB Pathway.","authors":"Jiao Xiao, Bin Gao, Yan Xiao, Xiangjie Liu","doi":"10.1080/10985549.2025.2532581","DOIUrl":null,"url":null,"abstract":"<p><p>Over half of diabetes mellitus (DM) patients suffer from gastrointestinal motility disorders. miR-365-3p is involved in DM progression, but its role in gastrointestinal motility disorders remains unclear. This study explored whether miR-365-3p affects gastrointestinal motility in diabetic rats via the TLR4/MyD88/NF-κB pathway. A DM rat model was established using a high-fat, high-sugar diet and injected with a miR-365-3p mimic/inhibitor. DM symptoms, gastric emptying, intestinal propulsion rates, and gastrointestinal transit time were assessed. HE and TUNEL staining evaluated gastrointestinal pathology and apoptosis. qRT-PCR detected miR-365-3p levels, while ELISA assessed gastrointestinal motility-related factors. Immunofluorescence and Western blot analyzed C-kit, TLR4, and pathway proteins. DM rats exhibited increased body weight, blood glucose, and glucose intolerance, with reduced fasting insulin, confirming successful modeling. miR-365-3p was downregulated in DM rats. Injection of miR-365-3p mimic alleviated DM symptoms, reduced gastrointestinal tissue damage and apoptosis, and improved motility. The TLR4 agonist CRX-527 impaired these effects. In conclusion, miR-365-3p overexpression alleviates DM symptoms, gastrointestinal injury, and motility disorders by inhibiting the TLR4/MyD88/NF-κB pathway, offering a potential therapeutic target.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"438-454"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2532581","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over half of diabetes mellitus (DM) patients suffer from gastrointestinal motility disorders. miR-365-3p is involved in DM progression, but its role in gastrointestinal motility disorders remains unclear. This study explored whether miR-365-3p affects gastrointestinal motility in diabetic rats via the TLR4/MyD88/NF-κB pathway. A DM rat model was established using a high-fat, high-sugar diet and injected with a miR-365-3p mimic/inhibitor. DM symptoms, gastric emptying, intestinal propulsion rates, and gastrointestinal transit time were assessed. HE and TUNEL staining evaluated gastrointestinal pathology and apoptosis. qRT-PCR detected miR-365-3p levels, while ELISA assessed gastrointestinal motility-related factors. Immunofluorescence and Western blot analyzed C-kit, TLR4, and pathway proteins. DM rats exhibited increased body weight, blood glucose, and glucose intolerance, with reduced fasting insulin, confirming successful modeling. miR-365-3p was downregulated in DM rats. Injection of miR-365-3p mimic alleviated DM symptoms, reduced gastrointestinal tissue damage and apoptosis, and improved motility. The TLR4 agonist CRX-527 impaired these effects. In conclusion, miR-365-3p overexpression alleviates DM symptoms, gastrointestinal injury, and motility disorders by inhibiting the TLR4/MyD88/NF-κB pathway, offering a potential therapeutic target.

miR-365-3p通过TLR4/MyD88/NF-κB通路调控糖尿病大鼠胃肠道功能障碍
超过一半的糖尿病(DM)患者患有胃肠运动障碍。miR-365-3p参与糖尿病的进展,但其在胃肠运动障碍中的作用尚不清楚。本研究探讨miR-365-3p是否通过TLR4/MyD88/NF-κB通路影响糖尿病大鼠胃肠运动。采用高脂高糖饮食建立DM大鼠模型,并注射miR-365-3p模拟物/抑制剂。评估糖尿病症状、胃排空、肠推进率和胃肠运输时间。HE和TUNEL染色评价胃肠道病理和细胞凋亡。qRT-PCR检测miR-365-3p水平,ELISA评估胃肠动力相关因素。免疫荧光和Western blot分析C-kit、TLR4和通路蛋白。糖尿病大鼠表现出体重增加、血糖升高和葡萄糖不耐受,空腹胰岛素降低,证实建模成功。miR-365-3p在DM大鼠中下调。注射miR-365-3p模拟物可减轻DM症状,减轻胃肠道组织损伤和细胞凋亡,改善运动。TLR4激动剂CRX-527削弱了这些作用。总之,miR-365-3p过表达通过抑制TLR4/MyD88/NF-κB通路,可缓解DM症状、胃肠道损伤和运动障碍,提供了一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信