Cholpisit Kiattisewee, Ava V Karanjia, Ryan A L Cardiff, Kira E Olander, Pansa Leejareon, Sarah S Alvi, James M Carothers, Jesse G Zalatan
{"title":"Systematic Mapping of Bacterial CRISPRa Systems for Synergistic Gene Activation Reveals Antagonistic Effects.","authors":"Cholpisit Kiattisewee, Ava V Karanjia, Ryan A L Cardiff, Kira E Olander, Pansa Leejareon, Sarah S Alvi, James M Carothers, Jesse G Zalatan","doi":"10.1021/acssynbio.5c00358","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR gene activation (CRISPRa) tools have shown great promise for bacterial strain engineering but often require customization for each intended application. Our goal is to create generalizable CRISPRa tools that can overcome previous limitations of gene activation in bacteria. In eukaryotic cells, multiple activators can be combined for synergistic gene activation. To identify potential effectors for synergistic activation in bacteria, we systematically characterized bacterial activator proteins with a set of engineered synthetic promoters. We found that optimal target sites for different activators could vary by up to 200 bases in the region upstream of the transcription start site (TSS). These optimal target sites qualitatively matched previous reports for each activator, but the precise targeting rules varied between different promoters. By characterizing targeting rules in the same promoter context, we were able to test activator combinations with each effector positioned at its optimal target site. We did not find any activator combinations that produced synergistic activation, and we found that many combinations were antagonistic. This systematic investigation highlights fundamental mechanistic differences between bacterial and eukaryotic transcriptional activation systems and suggests that alternative strategies will be necessary for strong bacterial gene activation at arbitrary endogenous targets.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00358","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR gene activation (CRISPRa) tools have shown great promise for bacterial strain engineering but often require customization for each intended application. Our goal is to create generalizable CRISPRa tools that can overcome previous limitations of gene activation in bacteria. In eukaryotic cells, multiple activators can be combined for synergistic gene activation. To identify potential effectors for synergistic activation in bacteria, we systematically characterized bacterial activator proteins with a set of engineered synthetic promoters. We found that optimal target sites for different activators could vary by up to 200 bases in the region upstream of the transcription start site (TSS). These optimal target sites qualitatively matched previous reports for each activator, but the precise targeting rules varied between different promoters. By characterizing targeting rules in the same promoter context, we were able to test activator combinations with each effector positioned at its optimal target site. We did not find any activator combinations that produced synergistic activation, and we found that many combinations were antagonistic. This systematic investigation highlights fundamental mechanistic differences between bacterial and eukaryotic transcriptional activation systems and suggests that alternative strategies will be necessary for strong bacterial gene activation at arbitrary endogenous targets.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.