Oleksandra Aust, Moritz R. T. Thiel, Eric Blanc, Mareen Lüthen, Viola Hollek, Rosario Astaburuaga-García, Bertram Klinger, Francisca Böhning, Alexandra Trinks, Dieter Beule, Björn Papke, David Horst, Nils Blüthgen, Christine Sers, Channing J. Der, Markus Morkel
{"title":"Reporter-based screening identifies RAS-RAF mutations as drivers of resistance to active-state RAS inhibitors in colorectal cancer","authors":"Oleksandra Aust, Moritz R. T. Thiel, Eric Blanc, Mareen Lüthen, Viola Hollek, Rosario Astaburuaga-García, Bertram Klinger, Francisca Böhning, Alexandra Trinks, Dieter Beule, Björn Papke, David Horst, Nils Blüthgen, Christine Sers, Channing J. Der, Markus Morkel","doi":"10.1126/scisignal.adr3738","DOIUrl":null,"url":null,"abstract":"<div >Therapy-induced acquired resistance limits the clinical effectiveness of mutation-specific KRAS inhibitors in colorectal cancer (CRC). Here, we investigated whether broad-spectrum, active-state RAS inhibitors meet similar limitations. We found that KRAS-mutant CRC cell lines were sensitive to the RAS(ON) multiselective RAS inhibitor RMC-7977, given that treatment resulted in RAS-RAF-MEK-ERK pathway inhibition; halted proliferation; and, in some cases, induced apoptosis. RMC-7977 initially reduced the activity of a compartment-specific, dual-color reporter of ERK activity, with reporter reactivation emerging after long-term dose escalation. These drug-resistant cell populations exhibited distinct patterns of phospho-protein abundance, transcriptional activities, and genomic mutations, including a Y71H mutation in KRAS and an S257L mutation in RAF1. Transgenic expression of KRAS<sup>G13D, Y71H</sup> or RAF1<sup>S257L</sup> in drug-sensitive CRC cells induced resistance to RMC-7977. CRC cells that were resistant to RMC-7977 and harboring RAF1<sup>S257L</sup> exhibited synergistic sensitivity to concurrent inhibition of RAS and RAF. Our findings demonstrate the power of reporter-assisted screening together with single-cell analyses for dissecting the complex landscape of therapy resistance. The strategy offers opportunities to develop clinically relevant combinatorial treatments to counteract the emergence of resistant cancer cells.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 896","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adr3738","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapy-induced acquired resistance limits the clinical effectiveness of mutation-specific KRAS inhibitors in colorectal cancer (CRC). Here, we investigated whether broad-spectrum, active-state RAS inhibitors meet similar limitations. We found that KRAS-mutant CRC cell lines were sensitive to the RAS(ON) multiselective RAS inhibitor RMC-7977, given that treatment resulted in RAS-RAF-MEK-ERK pathway inhibition; halted proliferation; and, in some cases, induced apoptosis. RMC-7977 initially reduced the activity of a compartment-specific, dual-color reporter of ERK activity, with reporter reactivation emerging after long-term dose escalation. These drug-resistant cell populations exhibited distinct patterns of phospho-protein abundance, transcriptional activities, and genomic mutations, including a Y71H mutation in KRAS and an S257L mutation in RAF1. Transgenic expression of KRASG13D, Y71H or RAF1S257L in drug-sensitive CRC cells induced resistance to RMC-7977. CRC cells that were resistant to RMC-7977 and harboring RAF1S257L exhibited synergistic sensitivity to concurrent inhibition of RAS and RAF. Our findings demonstrate the power of reporter-assisted screening together with single-cell analyses for dissecting the complex landscape of therapy resistance. The strategy offers opportunities to develop clinically relevant combinatorial treatments to counteract the emergence of resistant cancer cells.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.