Animal Trajectory Imputation and Uncertainty Quantification via Deep Learning

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-07-23 DOI:10.1002/env.70027
Kehui Yao, Ian P. McGahan, Jun Zhu, Daniel J. Storm, Daniel P. Walsh
{"title":"Animal Trajectory Imputation and Uncertainty Quantification via Deep Learning","authors":"Kehui Yao,&nbsp;Ian P. McGahan,&nbsp;Jun Zhu,&nbsp;Daniel J. Storm,&nbsp;Daniel P. Walsh","doi":"10.1002/env.70027","DOIUrl":null,"url":null,"abstract":"<p>Imputing missing data in animal trajectories is crucial for understanding animal movements during unobserved periods. However, the traditional methods, such as linear interpolation and the continuous-time correlated random walk model, are often inadequate to capture the complexity of animal movements. Here, we develop a deep learning approach to animal trajectory imputation by a conditional diffusion model. Unlike the traditional methods, our deep learning method uses observed data and external covariates to impute missing positions along an animal trajectory, capturing periodic patterns and the influence of covariates, which leads to more accurate imputations. In a case study of imputing deer trajectories, our method not only provides more accurate deterministic imputations than existing approaches but also achieves uncertainty quantification through probabilistic imputation.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70027","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Imputing missing data in animal trajectories is crucial for understanding animal movements during unobserved periods. However, the traditional methods, such as linear interpolation and the continuous-time correlated random walk model, are often inadequate to capture the complexity of animal movements. Here, we develop a deep learning approach to animal trajectory imputation by a conditional diffusion model. Unlike the traditional methods, our deep learning method uses observed data and external covariates to impute missing positions along an animal trajectory, capturing periodic patterns and the influence of covariates, which leads to more accurate imputations. In a case study of imputing deer trajectories, our method not only provides more accurate deterministic imputations than existing approaches but also achieves uncertainty quantification through probabilistic imputation.

Abstract Image

基于深度学习的动物轨迹估算与不确定性量化
在动物轨迹中输入缺失的数据对于理解动物在未观察时期的运动是至关重要的。然而,传统的方法,如线性插值和连续时间相关随机游走模型,往往不足以捕捉动物运动的复杂性。在这里,我们开发了一种基于条件扩散模型的动物轨迹估计的深度学习方法。与传统方法不同,我们的深度学习方法使用观察到的数据和外部协变量来沿动物轨迹推算缺失位置,捕获周期性模式和协变量的影响,从而导致更准确的推算。以鹿的轨迹推算为例,该方法不仅提供了比现有方法更精确的确定性推算,而且通过概率推算实现了不确定性的量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信