Reem Alghamdi, Markus Hadwiger, Guido Reina, Alberto Jaspe-Villanueva
{"title":"Lactea: Web-Based Spectrum-Preserving Multi-Resolution Visualization of the GAIA Star Catalog","authors":"Reem Alghamdi, Markus Hadwiger, Guido Reina, Alberto Jaspe-Villanueva","doi":"10.1111/cgf.70117","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The explosion of data in astronomy has resulted in an era of unprecedented opportunities for discovery. The GAIA mission's catalog, containing a large number of light sources (mostly stars) with several parameters such as sky position and proper motion, is playing a significant role in advancing astronomy research and has been crucial in various scientific breakthroughs over the past decade. In its current release, more than 200 million stars contain a calibrated continuous spectrum, which is essential for characterizing astronomical information such as effective temperature and surface gravity, and enabling complex tasks like interstellar extinction detection and narrow-band filtering. Even though numerous studies have been conducted to visualize and analyze the data in the SciVis and AstroVis communities, no work has attempted to leverage spectral information for visualization in real-time. Interactive exploration of such complex, massive data presents several challenges for visualization. This paper introduces a novel multi-resolution, spectrum-preserving data structure and a progressive, real-time visualization algorithm to handle the sheer volume of the data efficiently, enabling interactive visualization and exploration of the whole catalog's spectra. We show the efficiency of our method with our open-source, interactive, web-based tool for exploring the GAIA catalog, and discuss astronomically relevant use cases of our system.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70117","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The explosion of data in astronomy has resulted in an era of unprecedented opportunities for discovery. The GAIA mission's catalog, containing a large number of light sources (mostly stars) with several parameters such as sky position and proper motion, is playing a significant role in advancing astronomy research and has been crucial in various scientific breakthroughs over the past decade. In its current release, more than 200 million stars contain a calibrated continuous spectrum, which is essential for characterizing astronomical information such as effective temperature and surface gravity, and enabling complex tasks like interstellar extinction detection and narrow-band filtering. Even though numerous studies have been conducted to visualize and analyze the data in the SciVis and AstroVis communities, no work has attempted to leverage spectral information for visualization in real-time. Interactive exploration of such complex, massive data presents several challenges for visualization. This paper introduces a novel multi-resolution, spectrum-preserving data structure and a progressive, real-time visualization algorithm to handle the sheer volume of the data efficiently, enabling interactive visualization and exploration of the whole catalog's spectra. We show the efficiency of our method with our open-source, interactive, web-based tool for exploring the GAIA catalog, and discuss astronomically relevant use cases of our system.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.