The Potential Mechanism of Kushen Decoction in Treating Haemorrhoids: An Integration of Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Xu Wei, He Qin, Tanjun Wei, Taishan Chen, Cai Jing, Cheng Xiao, Xianhai Li, Qing Zhou
{"title":"The Potential Mechanism of Kushen Decoction in Treating Haemorrhoids: An Integration of Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation","authors":"Xu Wei,&nbsp;He Qin,&nbsp;Tanjun Wei,&nbsp;Taishan Chen,&nbsp;Cai Jing,&nbsp;Cheng Xiao,&nbsp;Xianhai Li,&nbsp;Qing Zhou","doi":"10.1049/syb2.70029","DOIUrl":null,"url":null,"abstract":"<p>Kushen decoction (KSD), a traditional Chinese medicine, is extensively utilised for haemorrhoid treatment, yet its underlying mechanisms remain elusive. This study employs a systematic approach to elucidate the therapeutic mechanisms of KSD in haemorrhoid treatment by integrating network pharmacology, molecular docking and molecular dynamics simulation. A total of 788 active ingredients were identified from KSD, among which 623 intersected with 99 targets associated with haemorrhoids. Network pharmacology revealed quercetin, rhodionin and luteolin as key ingredients targeting 10 hub targets (CRP, PTGS2, ALB, CYP3A4, KLK3, TNF, MMP9, CYP1A2, CYP3A5 and CYP2C8) implicated in haemorrhoid pathology. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses indicated the involvement of these targets in pathways such as cGMP-PKG signalling, tryptophan metabolism, steroid hormone biosynthesis and drug metabolism-cytochrome P450. Moreover, molecular docking and molecular dynamics simulations confirmed the binding solid affinity of key ingredients to hub targets. These findings suggest that KSD's therapeutic effects on haemorrhoids are mediated through symptom alleviation, anti-inflammatory actions and immune enhancement.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Kushen decoction (KSD), a traditional Chinese medicine, is extensively utilised for haemorrhoid treatment, yet its underlying mechanisms remain elusive. This study employs a systematic approach to elucidate the therapeutic mechanisms of KSD in haemorrhoid treatment by integrating network pharmacology, molecular docking and molecular dynamics simulation. A total of 788 active ingredients were identified from KSD, among which 623 intersected with 99 targets associated with haemorrhoids. Network pharmacology revealed quercetin, rhodionin and luteolin as key ingredients targeting 10 hub targets (CRP, PTGS2, ALB, CYP3A4, KLK3, TNF, MMP9, CYP1A2, CYP3A5 and CYP2C8) implicated in haemorrhoid pathology. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses indicated the involvement of these targets in pathways such as cGMP-PKG signalling, tryptophan metabolism, steroid hormone biosynthesis and drug metabolism-cytochrome P450. Moreover, molecular docking and molecular dynamics simulations confirmed the binding solid affinity of key ingredients to hub targets. These findings suggest that KSD's therapeutic effects on haemorrhoids are mediated through symptom alleviation, anti-inflammatory actions and immune enhancement.

Abstract Image

苦参汤治疗痔疮的潜在机制:网络药理学、分子对接和分子动力学模拟的结合
苦参汤是一种被广泛应用于痔疮治疗的传统中药,但其作用机制尚不清楚。本研究采用网络药理学、分子对接和分子动力学模拟相结合的方法,系统阐明KSD在痔疮治疗中的作用机制。共鉴定出788种有效成分,其中623种与99个与痔疮相关的靶点相交。网络药理学发现槲皮素、红豆素和木犀草素是10个与痔疮病理相关的枢纽靶点(CRP、PTGS2、ALB、CYP3A4、KLK3、TNF、MMP9、CYP1A2、CYP3A5和CYP2C8)的关键成分。基因本体(GO)和京都基因与基因组百科全书(KEGG)分析表明,这些靶点参与cGMP-PKG信号传导、色氨酸代谢、类固醇激素生物合成和药物代谢-细胞色素P450等途径。此外,分子对接和分子动力学模拟证实了关键成分与枢纽靶点的结合固体亲和力。这些发现表明KSD对痔疮的治疗作用是通过缓解症状、抗炎作用和增强免疫来介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信