The Potential Mechanism of Kushen Decoction in Treating Haemorrhoids: An Integration of Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation
Xu Wei, He Qin, Tanjun Wei, Taishan Chen, Cai Jing, Cheng Xiao, Xianhai Li, Qing Zhou
{"title":"The Potential Mechanism of Kushen Decoction in Treating Haemorrhoids: An Integration of Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation","authors":"Xu Wei, He Qin, Tanjun Wei, Taishan Chen, Cai Jing, Cheng Xiao, Xianhai Li, Qing Zhou","doi":"10.1049/syb2.70029","DOIUrl":null,"url":null,"abstract":"<p>Kushen decoction (KSD), a traditional Chinese medicine, is extensively utilised for haemorrhoid treatment, yet its underlying mechanisms remain elusive. This study employs a systematic approach to elucidate the therapeutic mechanisms of KSD in haemorrhoid treatment by integrating network pharmacology, molecular docking and molecular dynamics simulation. A total of 788 active ingredients were identified from KSD, among which 623 intersected with 99 targets associated with haemorrhoids. Network pharmacology revealed quercetin, rhodionin and luteolin as key ingredients targeting 10 hub targets (CRP, PTGS2, ALB, CYP3A4, KLK3, TNF, MMP9, CYP1A2, CYP3A5 and CYP2C8) implicated in haemorrhoid pathology. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses indicated the involvement of these targets in pathways such as cGMP-PKG signalling, tryptophan metabolism, steroid hormone biosynthesis and drug metabolism-cytochrome P450. Moreover, molecular docking and molecular dynamics simulations confirmed the binding solid affinity of key ingredients to hub targets. These findings suggest that KSD's therapeutic effects on haemorrhoids are mediated through symptom alleviation, anti-inflammatory actions and immune enhancement.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kushen decoction (KSD), a traditional Chinese medicine, is extensively utilised for haemorrhoid treatment, yet its underlying mechanisms remain elusive. This study employs a systematic approach to elucidate the therapeutic mechanisms of KSD in haemorrhoid treatment by integrating network pharmacology, molecular docking and molecular dynamics simulation. A total of 788 active ingredients were identified from KSD, among which 623 intersected with 99 targets associated with haemorrhoids. Network pharmacology revealed quercetin, rhodionin and luteolin as key ingredients targeting 10 hub targets (CRP, PTGS2, ALB, CYP3A4, KLK3, TNF, MMP9, CYP1A2, CYP3A5 and CYP2C8) implicated in haemorrhoid pathology. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses indicated the involvement of these targets in pathways such as cGMP-PKG signalling, tryptophan metabolism, steroid hormone biosynthesis and drug metabolism-cytochrome P450. Moreover, molecular docking and molecular dynamics simulations confirmed the binding solid affinity of key ingredients to hub targets. These findings suggest that KSD's therapeutic effects on haemorrhoids are mediated through symptom alleviation, anti-inflammatory actions and immune enhancement.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.