André Luis Ferreira Marques;Ricardo Sbragio;Pedro Luiz Pizzigatti Corrêa;Marcelo Ramos Martins
{"title":"Artificial Intelligence in Data Science: Evaluating Forecasting Models for Solar Energy in the Amazon Basin","authors":"André Luis Ferreira Marques;Ricardo Sbragio;Pedro Luiz Pizzigatti Corrêa;Marcelo Ramos Martins","doi":"10.1109/ACCESS.2025.3589275","DOIUrl":null,"url":null,"abstract":"Forecasting models employing machine learning (ML) and deep learning (DL) have become fundamental for assessing the technical feasibility of renewable energy systems. Among these, solar energy stands out as a renewable energy option, particularly relevant for supporting the preservation of the Amazon rainforest. This study introduces a novel approach using ML and DL methods—integrated with Universal Kriging and Holt-Winters (time series) models — to forecast solar irradiance (kWh/m2) in cities across the state of Amazonas. The analysis is grounded in the Data Science cycle, with input data sourced from both ground stations and satellite products. Forecasting performance was evaluated for short-term horizons (one to three days ahead) across three representative cities. The hybrid SARIMAX-CNN-LSTM, SARIMAX-CNN-Transformer, and SARIMAX-TCN models achieved MAPE values ranging from 18.1% to 26.6% for the different forecast horizons and cities. These results are consistent with existing literature and reinforce the suitability of advanced ML/DL approaches for solar energy forecasting in highly variable and challenging environments such as the Amazon Basin.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"125066-125079"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080416","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11080416/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting models employing machine learning (ML) and deep learning (DL) have become fundamental for assessing the technical feasibility of renewable energy systems. Among these, solar energy stands out as a renewable energy option, particularly relevant for supporting the preservation of the Amazon rainforest. This study introduces a novel approach using ML and DL methods—integrated with Universal Kriging and Holt-Winters (time series) models — to forecast solar irradiance (kWh/m2) in cities across the state of Amazonas. The analysis is grounded in the Data Science cycle, with input data sourced from both ground stations and satellite products. Forecasting performance was evaluated for short-term horizons (one to three days ahead) across three representative cities. The hybrid SARIMAX-CNN-LSTM, SARIMAX-CNN-Transformer, and SARIMAX-TCN models achieved MAPE values ranging from 18.1% to 26.6% for the different forecast horizons and cities. These results are consistent with existing literature and reinforce the suitability of advanced ML/DL approaches for solar energy forecasting in highly variable and challenging environments such as the Amazon Basin.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.