Hierarchical Testing With Rabbit Optimization for Industrial Cyber-Physical Systems

Jinwei Hu;Zezhi Tang;Xin Jin;Benyuan Zhang;Yi Dong;Xiaowei Huang
{"title":"Hierarchical Testing With Rabbit Optimization for Industrial Cyber-Physical Systems","authors":"Jinwei Hu;Zezhi Tang;Xin Jin;Benyuan Zhang;Yi Dong;Xiaowei Huang","doi":"10.1109/TICPS.2025.3586988","DOIUrl":null,"url":null,"abstract":"This paper presents HERO (Hierarchical Testing with Rabbit Optimization), a novel black-box adversarial testing framework for evaluating the robustness of deep learning-based Prognostics and Health Management systems in Industrial Cyber-Physical Systems. Leveraging Artificial Rabbit Optimization, HERO generates physically constrained adversarial examples that align with real-world data distributions via global and local perspective. Its generalizability ensures applicability across diverse ICPS scenarios. This study specifically focuses on the Proton Exchange Membrane Fuel Cell system, chosen for its highly dynamic operational conditions, complex degradation mechanisms, and increasing integration into ICPS as a sustainable and efficient energy solution. Experimental results highlight HERO’s ability to uncover vulnerabilities in even state-of-the-art PHM models, underscoring the critical need for enhanced robustness in real-world applications. By addressing these challenges, HERO demonstrates its potential to advance more resilient PHM systems across a wide range of ICPS domains.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"3 ","pages":"472-484"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11077439/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents HERO (Hierarchical Testing with Rabbit Optimization), a novel black-box adversarial testing framework for evaluating the robustness of deep learning-based Prognostics and Health Management systems in Industrial Cyber-Physical Systems. Leveraging Artificial Rabbit Optimization, HERO generates physically constrained adversarial examples that align with real-world data distributions via global and local perspective. Its generalizability ensures applicability across diverse ICPS scenarios. This study specifically focuses on the Proton Exchange Membrane Fuel Cell system, chosen for its highly dynamic operational conditions, complex degradation mechanisms, and increasing integration into ICPS as a sustainable and efficient energy solution. Experimental results highlight HERO’s ability to uncover vulnerabilities in even state-of-the-art PHM models, underscoring the critical need for enhanced robustness in real-world applications. By addressing these challenges, HERO demonstrates its potential to advance more resilient PHM systems across a wide range of ICPS domains.
基于兔子优化的工业信息物理系统分层测试
本文提出了HERO(分层测试与兔子优化),这是一种新的黑盒对抗测试框架,用于评估工业网络物理系统中基于深度学习的预测和健康管理系统的鲁棒性。利用人工兔子优化,HERO通过全局和局部视角生成与现实世界数据分布一致的物理约束对抗示例。它的通用性确保了不同ICPS场景的适用性。本研究特别关注质子交换膜燃料电池系统,选择它是因为它具有高度动态的操作条件,复杂的降解机制,并且作为一种可持续和高效的能源解决方案越来越多地集成到ICPS中。实验结果突出了HERO能够发现最先进的PHM模型中的漏洞,强调了在实际应用中增强鲁棒性的关键需求。通过解决这些挑战,HERO展示了其在广泛的ICPS领域推进更具弹性的PHM系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信