Global existence for the Vlasov–Euler–Fokker–Planck system in low-regularity space

IF 1.3 Q2 MATHEMATICS, APPLIED
Bing Tan, Yingzhe Fan
{"title":"Global existence for the Vlasov–Euler–Fokker–Planck system in low-regularity space","authors":"Bing Tan,&nbsp;Yingzhe Fan","doi":"10.1016/j.rinam.2025.100617","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the global well-posedness of the Cauchy problem for the Vlasov–Fokker–Planck equation coupled with the incompressible Euler system around a normalized global Maxwellian in a periodic spatial domain. The system describes the interaction between a fluid governed by Euler equations and a particle distribution evolving under the VFP dynamics, with coupling through a drag force. We establish the existence and uniqueness of global mild solutions for small initial data in a low regularity function space <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></math></span> by employing Fourier analysis.</div><div>Compare to the Navier–Stokes–Vlasov-Fokker–Planck system (Tan and Fan, 2023) where velocity dissipation estimates can be directly derived from the viscous term, the Vlasov–Euler–Fokker–Planck system lacks such direct accessibility to velocity dissipation due to its inherent structural differences. To overcome this obstacle, we need to exploit the macroscopic dissipation <span><math><mi>b</mi></math></span> inherent in the macroscopic equation. Then the dissipation of velocity is indirectly captured by combining the macroscopic dissipation of <span><math><mi>b</mi></math></span> and the linear dissipation of <span><math><mrow><mi>u</mi><mo>−</mo><mi>b</mi></mrow></math></span> within the equation. Finally the uniform energy functionals of the solution can be obtained by utilizing the refined energy estimate.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100617"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the global well-posedness of the Cauchy problem for the Vlasov–Fokker–Planck equation coupled with the incompressible Euler system around a normalized global Maxwellian in a periodic spatial domain. The system describes the interaction between a fluid governed by Euler equations and a particle distribution evolving under the VFP dynamics, with coupling through a drag force. We establish the existence and uniqueness of global mild solutions for small initial data in a low regularity function space Lk1LTLv2 by employing Fourier analysis.
Compare to the Navier–Stokes–Vlasov-Fokker–Planck system (Tan and Fan, 2023) where velocity dissipation estimates can be directly derived from the viscous term, the Vlasov–Euler–Fokker–Planck system lacks such direct accessibility to velocity dissipation due to its inherent structural differences. To overcome this obstacle, we need to exploit the macroscopic dissipation b inherent in the macroscopic equation. Then the dissipation of velocity is indirectly captured by combining the macroscopic dissipation of b and the linear dissipation of ub within the equation. Finally the uniform energy functionals of the solution can be obtained by utilizing the refined energy estimate.
低正则空间中Vlasov-Euler-Fokker-Planck系统的整体存在性
本文研究了周期空间域上Vlasov-Fokker-Planck方程与不可压缩欧拉系统在规格化全局麦克斯韦方程组周围耦合的Cauchy问题的全局适定性。该系统描述了由欧拉方程控制的流体与在VFP动力学下演化的粒子分布之间的相互作用,并通过阻力进行耦合。利用傅里叶分析,建立了低正则性函数空间Lk1LT∞Lv2上小初始数据全局温和解的存在唯一性。与Navier-Stokes-Vlasov-Fokker-Planck系统(Tan and Fan, 2023)相比,Vlasov-Euler-Fokker-Planck系统由于其固有的结构差异,无法直接获得速度耗散估计。在Navier-Stokes-Vlasov-Fokker-Planck系统中,可以直接从粘性项中导出速度耗散估计。为了克服这个障碍,我们需要利用宏观方程中固有的宏观耗散b。然后结合方程中b的宏观耗散和u−b的线性耗散,间接捕捉速度耗散。最后利用精化的能量估计得到解的均匀能量泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信