MEOR-on-Chip: Lab-scale visualization of dynamics and mechanisms in microbial enhanced oil recovery via microfluidic technology

0 ENERGY & FUELS
Wu-Juan Sun , Ya-Ting Deng , Zhi-Hui Jiang , Xiao-Jun Wang , Yong Gao , Zhi-Rui Liu , Cong-Yu Ke , Si-Chang Wang , Qun-Zheng Zhang , Rui-Fei Wang
{"title":"MEOR-on-Chip: Lab-scale visualization of dynamics and mechanisms in microbial enhanced oil recovery via microfluidic technology","authors":"Wu-Juan Sun ,&nbsp;Ya-Ting Deng ,&nbsp;Zhi-Hui Jiang ,&nbsp;Xiao-Jun Wang ,&nbsp;Yong Gao ,&nbsp;Zhi-Rui Liu ,&nbsp;Cong-Yu Ke ,&nbsp;Si-Chang Wang ,&nbsp;Qun-Zheng Zhang ,&nbsp;Rui-Fei Wang","doi":"10.1016/j.geoen.2025.214082","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial enhanced oil recovery (MEOR) technology has made significant strides in both theoretical research and practical applications, yet gaps persist in understanding its mechanism. This study utilizes a microfluidic chip to delve into the microbial flooding process, simulating MEOR and employing in-situ monitoring through microscopic visualization. The on-chip microbial flooding experiments feature a composite microbial community which swiftly reproduces using petroleum hydrocarbons as the sole carbon source, producing biosurfactants, organic acids, and biogas with notable emulsification and viscosity reduction effects on crude oil. Microbial flooding, building on primary water flooding, elevates oil recovery by 16.7 %. In-situ imaging examines oil displacement, residual oil morphology, microbial dynamics, and MEOR mechanisms across displacement processes. Conclusions highlight microbial strains' robust growth and metabolite effects, with the composite community enhancing viscosity reduction by 74.1 %. Facilitated by microfluidic technology, mechanistic studies reveal microorganisms' interactions with oil, leading to emulsification and dispersion. Microorganisms primarily utilize petroleum hydrocarbons at the oil/water interface for growth, whilst use dissolved hydrocarbons in the aqueous phase as carbon sources. Microbial transportation in the reservoir during water injection reveals migration patterns across channels and blind ends, underscoring MEOR complexities. These findings enrich MEOR theory and inform future research and application endeavors.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"255 ","pages":"Article 214082"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025004403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial enhanced oil recovery (MEOR) technology has made significant strides in both theoretical research and practical applications, yet gaps persist in understanding its mechanism. This study utilizes a microfluidic chip to delve into the microbial flooding process, simulating MEOR and employing in-situ monitoring through microscopic visualization. The on-chip microbial flooding experiments feature a composite microbial community which swiftly reproduces using petroleum hydrocarbons as the sole carbon source, producing biosurfactants, organic acids, and biogas with notable emulsification and viscosity reduction effects on crude oil. Microbial flooding, building on primary water flooding, elevates oil recovery by 16.7 %. In-situ imaging examines oil displacement, residual oil morphology, microbial dynamics, and MEOR mechanisms across displacement processes. Conclusions highlight microbial strains' robust growth and metabolite effects, with the composite community enhancing viscosity reduction by 74.1 %. Facilitated by microfluidic technology, mechanistic studies reveal microorganisms' interactions with oil, leading to emulsification and dispersion. Microorganisms primarily utilize petroleum hydrocarbons at the oil/water interface for growth, whilst use dissolved hydrocarbons in the aqueous phase as carbon sources. Microbial transportation in the reservoir during water injection reveals migration patterns across channels and blind ends, underscoring MEOR complexities. These findings enrich MEOR theory and inform future research and application endeavors.
芯片上的微流体技术:微生物提高采收率的动力学和机制的实验室规模可视化
微生物提高采收率(MEOR)技术在理论研究和实际应用方面都取得了重大进展,但对其机理的了解仍然存在空白。本研究利用微流控芯片对微生物驱油过程进行深入研究,模拟MEOR,并通过显微可视化进行现场监测。芯片上微生物驱油实验的特点是,复合微生物群落以石油烃为唯一碳源,迅速繁殖,产生生物表面活性剂、有机酸和沼气,对原油具有显著的乳化和降粘效果。微生物驱油在一次注水的基础上,提高了16.7%的采收率。原位成像检查了驱油、剩余油形态、微生物动力学和驱油过程中的MEOR机制。结论强调了微生物菌株的强劲生长和代谢物效应,复合群落使粘度降低了74.1%。在微流体技术的推动下,机理研究揭示了微生物与油的相互作用,导致乳化和分散。微生物主要利用油/水界面的石油烃生长,同时利用水相中溶解的碳氢化合物作为碳源。在注水过程中,微生物在储层中的迁移揭示了跨通道和盲区的迁移模式,强调了MEOR的复杂性。这些发现丰富了MEOR理论,并为未来的研究和应用工作提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信