Permeability characteristics of hydrate-bearing sediments during hydrate formation and depressurization decomposition processes

0 ENERGY & FUELS
Hui-e Chen , Wenchong Shan , Yueqiang Ma
{"title":"Permeability characteristics of hydrate-bearing sediments during hydrate formation and depressurization decomposition processes","authors":"Hui-e Chen ,&nbsp;Wenchong Shan ,&nbsp;Yueqiang Ma","doi":"10.1016/j.geoen.2025.214099","DOIUrl":null,"url":null,"abstract":"<div><div>The permeability of hydrate-bearing sediment (HBS) reservoirs governs fluid migration and directly influences the efficiency of gas hydrate extraction. In this study, HBS samples with varying hydrate saturations were prepared using two distinct methods: direct hydrate formation (Method A) and depressurization-induced decomposition (Method B). Permeability measurements were conducted under effective confining pressures ranging from 1.5 to 4.5 MPa. Hydrate growth modes during formation and decomposition were characterized using the Kozeny grain model (KGM), enabling mechanistic analysis of permeability evolution. Key findings reveals that the permeability decreases with increasing hydrate saturation and effective confining pressure. Under an effective stress of 4.5 MPa, permeability values decline to 3.76 mD (at <em>S</em><sub><em>h</em></sub> = 29.30 %), 9.44 mD (at <em>S</em><sub><em>h</em></sub> = 19.66 %), and 13.3 mD (at <em>S</em><sub><em>h</em></sub> = 11.27 %), respectively, closely matching field-scale observations. Notably, HBS samples subjected to hydrate formation and subsequent decomposition exhibit higher permeability than those without hydrate decomposition, highlighting the irreversible impact of hydrate dynamics on pore structure. Method B, simulating depressurization mining conditions, induces distinct hydrate growth modes, which critically alter permeability behavior. This method better replicates field-scale hydrate dissociation processes, demonstrating its superiority in predicting reservoir responses during gas extraction.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"255 ","pages":"Article 214099"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025004579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The permeability of hydrate-bearing sediment (HBS) reservoirs governs fluid migration and directly influences the efficiency of gas hydrate extraction. In this study, HBS samples with varying hydrate saturations were prepared using two distinct methods: direct hydrate formation (Method A) and depressurization-induced decomposition (Method B). Permeability measurements were conducted under effective confining pressures ranging from 1.5 to 4.5 MPa. Hydrate growth modes during formation and decomposition were characterized using the Kozeny grain model (KGM), enabling mechanistic analysis of permeability evolution. Key findings reveals that the permeability decreases with increasing hydrate saturation and effective confining pressure. Under an effective stress of 4.5 MPa, permeability values decline to 3.76 mD (at Sh = 29.30 %), 9.44 mD (at Sh = 19.66 %), and 13.3 mD (at Sh = 11.27 %), respectively, closely matching field-scale observations. Notably, HBS samples subjected to hydrate formation and subsequent decomposition exhibit higher permeability than those without hydrate decomposition, highlighting the irreversible impact of hydrate dynamics on pore structure. Method B, simulating depressurization mining conditions, induces distinct hydrate growth modes, which critically alter permeability behavior. This method better replicates field-scale hydrate dissociation processes, demonstrating its superiority in predicting reservoir responses during gas extraction.
水合物形成与降压分解过程中含水合物沉积物渗透率特征
含水合物沉积物(HBS)储层的渗透率决定着流体的运移,直接影响天然气水合物的开采效率。在本研究中,采用两种不同的方法制备不同水合物饱和度的HBS样品:直接水合物形成(方法A)和减压诱导分解(方法B)。渗透率测量在有效围压1.5 ~ 4.5 MPa范围内进行。利用Kozeny颗粒模型(KGM)对水合物形成和分解过程中的生长模式进行了表征,从而对渗透率演化进行了机理分析。主要研究结果表明,渗透率随水合物饱和度和有效围压的增加而降低。在有效应力为4.5 MPa时,渗透率值分别降至3.76 mD (Sh = 29.30%)、9.44 mD (Sh = 19.66%)和13.3 mD (Sh = 11.27%),与现场观测值基本吻合。值得注意的是,经过水合物形成和随后分解的HBS样品的渗透率高于未经过水合物分解的HBS样品,这凸显了水合物动力学对孔隙结构的不可逆影响。方法B模拟降压开采条件,诱导出不同的水合物生长模式,这对渗透率行为产生了关键影响。该方法较好地模拟了现场尺度的水合物解离过程,证明了其在预测天然气开采过程中储层响应方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信