Jose David Fernández-Rodríguez , Iván García-Aguilar , Rafael Marcos Luque-Baena , Ezequiel López-Rubio , Marcos Baena-Molina , Juan Francisco Valenzuela-Valdés
{"title":"Learning to shape beams: Using a neural network to control a beamforming antenna","authors":"Jose David Fernández-Rodríguez , Iván García-Aguilar , Rafael Marcos Luque-Baena , Ezequiel López-Rubio , Marcos Baena-Molina , Juan Francisco Valenzuela-Valdés","doi":"10.1016/j.comnet.2025.111544","DOIUrl":null,"url":null,"abstract":"<div><div>The field of reconfigurable intelligent surfaces (RIS) has gained significant traction in recent years in the wireless communications domain, owing to the ability to dynamically reconfigure surfaces to change their electromagnetic radiance patterns in real-time. In this work, we propose utilizing a novel deep learning model that innovatively employs only the parameters of each signal or beam as input, eliminating the need for the entire one-dimensional signal or its diffusion map (two-dimensional information). This approach enhances efficiency and reduces the overall complexity of the model, drastically reducing network size and enabling its implementation on low-cost devices. Furthermore, to enhance training effectiveness, the learning model attempts to estimate the discrete cosine transform applied to the output matrix rather than the raw matrix, significantly improving the achieved accuracy. This scheme is validated on a 1-bit programmable metasurface of size 10<span><math><mo>×</mo></math></span>10, achieving an accuracy close to 95% using a K-fold methodology with K=10.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"270 ","pages":"Article 111544"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625005110","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The field of reconfigurable intelligent surfaces (RIS) has gained significant traction in recent years in the wireless communications domain, owing to the ability to dynamically reconfigure surfaces to change their electromagnetic radiance patterns in real-time. In this work, we propose utilizing a novel deep learning model that innovatively employs only the parameters of each signal or beam as input, eliminating the need for the entire one-dimensional signal or its diffusion map (two-dimensional information). This approach enhances efficiency and reduces the overall complexity of the model, drastically reducing network size and enabling its implementation on low-cost devices. Furthermore, to enhance training effectiveness, the learning model attempts to estimate the discrete cosine transform applied to the output matrix rather than the raw matrix, significantly improving the achieved accuracy. This scheme is validated on a 1-bit programmable metasurface of size 1010, achieving an accuracy close to 95% using a K-fold methodology with K=10.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.