Learning to shape beams: Using a neural network to control a beamforming antenna

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jose David Fernández-Rodríguez , Iván García-Aguilar , Rafael Marcos Luque-Baena , Ezequiel López-Rubio , Marcos Baena-Molina , Juan Francisco Valenzuela-Valdés
{"title":"Learning to shape beams: Using a neural network to control a beamforming antenna","authors":"Jose David Fernández-Rodríguez ,&nbsp;Iván García-Aguilar ,&nbsp;Rafael Marcos Luque-Baena ,&nbsp;Ezequiel López-Rubio ,&nbsp;Marcos Baena-Molina ,&nbsp;Juan Francisco Valenzuela-Valdés","doi":"10.1016/j.comnet.2025.111544","DOIUrl":null,"url":null,"abstract":"<div><div>The field of reconfigurable intelligent surfaces (RIS) has gained significant traction in recent years in the wireless communications domain, owing to the ability to dynamically reconfigure surfaces to change their electromagnetic radiance patterns in real-time. In this work, we propose utilizing a novel deep learning model that innovatively employs only the parameters of each signal or beam as input, eliminating the need for the entire one-dimensional signal or its diffusion map (two-dimensional information). This approach enhances efficiency and reduces the overall complexity of the model, drastically reducing network size and enabling its implementation on low-cost devices. Furthermore, to enhance training effectiveness, the learning model attempts to estimate the discrete cosine transform applied to the output matrix rather than the raw matrix, significantly improving the achieved accuracy. This scheme is validated on a 1-bit programmable metasurface of size 10<span><math><mo>×</mo></math></span>10, achieving an accuracy close to 95% using a K-fold methodology with K=10.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"270 ","pages":"Article 111544"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625005110","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The field of reconfigurable intelligent surfaces (RIS) has gained significant traction in recent years in the wireless communications domain, owing to the ability to dynamically reconfigure surfaces to change their electromagnetic radiance patterns in real-time. In this work, we propose utilizing a novel deep learning model that innovatively employs only the parameters of each signal or beam as input, eliminating the need for the entire one-dimensional signal or its diffusion map (two-dimensional information). This approach enhances efficiency and reduces the overall complexity of the model, drastically reducing network size and enabling its implementation on low-cost devices. Furthermore, to enhance training effectiveness, the learning model attempts to estimate the discrete cosine transform applied to the output matrix rather than the raw matrix, significantly improving the achieved accuracy. This scheme is validated on a 1-bit programmable metasurface of size 10×10, achieving an accuracy close to 95% using a K-fold methodology with K=10.

Abstract Image

学习塑造波束:使用神经网络来控制波束形成天线
近年来,可重构智能表面(RIS)领域在无线通信领域获得了显著的发展,因为它能够动态地重新配置表面以实时改变其电磁辐射模式。在这项工作中,我们建议使用一种新的深度学习模型,该模型创新性地仅使用每个信号或波束的参数作为输入,从而消除了对整个一维信号或其扩散图(二维信息)的需求。这种方法提高了效率,降低了模型的整体复杂性,大大减小了网络规模,并使其能够在低成本设备上实现。此外,为了提高训练效率,学习模型尝试估计应用于输出矩阵的离散余弦变换,而不是原始矩阵,显著提高了达到的精度。该方案在尺寸为10×10的1位可编程超表面上进行了验证,使用K=10的K-fold方法实现了接近95%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信