Rough path lifts of Banach space-valued Gaussian processes

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
A.A. Kalinichenko
{"title":"Rough path lifts of Banach space-valued Gaussian processes","authors":"A.A. Kalinichenko","doi":"10.1016/j.spa.2025.104739","DOIUrl":null,"url":null,"abstract":"<div><div>Under certain assumptions on a Gaussian process taking values in a separable Banach space, we construct its lift to a geometric rough path. The lift is natural in the sense that for any sequence of piece-wise linear approximations to the original process, their signatures converge to the lifted path in a suitable metric. This extends to infinite dimensions the known results in Euclidean spaces. Examples of processes satisfying our conditions include the infinite-dimensional analogues of Brownian motion, fractional Brownian motion with Hurst parameter <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow></mrow></math></span>, Ornstein–Uhlenbeck process. As a by-product of our methods, we also provide a construction for Ito–Skorokhod integrals of these processes, which might be of independent interest.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104739"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001826","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Under certain assumptions on a Gaussian process taking values in a separable Banach space, we construct its lift to a geometric rough path. The lift is natural in the sense that for any sequence of piece-wise linear approximations to the original process, their signatures converge to the lifted path in a suitable metric. This extends to infinite dimensions the known results in Euclidean spaces. Examples of processes satisfying our conditions include the infinite-dimensional analogues of Brownian motion, fractional Brownian motion with Hurst parameter H(14,12], Ornstein–Uhlenbeck process. As a by-product of our methods, we also provide a construction for Ito–Skorokhod integrals of these processes, which might be of independent interest.
Banach空间值高斯过程的粗糙路径提升
在一定的假设条件下,我们构造了一个取值于可分离巴拿赫空间的高斯过程到一个几何粗糙路径的提升。升力是自然的,因为对于原始过程的任何分段线性近似序列,它们的特征收敛于一个合适的度量中的升力路径。这将欧几里得空间的已知结果扩展到无限维。满足我们条件的过程的例子包括布朗运动的无限维类似物,Hurst参数H∈(14,12)的分数布朗运动,Ornstein-Uhlenbeck过程。作为我们方法的副产品,我们还提供了这些过程的Ito-Skorokhod积分的构造,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信