Proper conflict-free coloring of Mycielskians with fast algorithms

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yali Wu, Xin Zhang
{"title":"Proper conflict-free coloring of Mycielskians with fast algorithms","authors":"Yali Wu,&nbsp;Xin Zhang","doi":"10.1016/j.tcs.2025.115482","DOIUrl":null,"url":null,"abstract":"<div><div>A proper conflict-free coloring, often termed as PCF-coloring, of a graph refers to a proper vertex coloring wherein each vertex's open neighborhood contains at least one color appearing exactly once. PCF-coloring boasts a wide range of applications, from theoretical graph analysis to practical applications in networking, geographic information systems, scheduling, and constraint satisfaction problems. Caro, Petruševski, and Škrekovski conjectured in 2023 that every graph with maximum degree <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> has a PCF-<span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring. In this paper, we validate this conjecture for the Mycielskians of 1-subdivided graphs. Additionally, we determine the PCF-chromatic number for Mycielskians of paths, cycles, complete graphs, complete bipartite graphs, and wheels, and provide efficient algorithms that produce optimal PCF-colorings for these graphs.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115482"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A proper conflict-free coloring, often termed as PCF-coloring, of a graph refers to a proper vertex coloring wherein each vertex's open neighborhood contains at least one color appearing exactly once. PCF-coloring boasts a wide range of applications, from theoretical graph analysis to practical applications in networking, geographic information systems, scheduling, and constraint satisfaction problems. Caro, Petruševski, and Škrekovski conjectured in 2023 that every graph with maximum degree Δ3 has a PCF-(Δ+1)-coloring. In this paper, we validate this conjecture for the Mycielskians of 1-subdivided graphs. Additionally, we determine the PCF-chromatic number for Mycielskians of paths, cycles, complete graphs, complete bipartite graphs, and wheels, and provide efficient algorithms that produce optimal PCF-colorings for these graphs.
用快速算法求解mycielskian的无冲突着色
图的适当无冲突着色,通常称为pcf着色,是指每个顶点的开放邻域至少包含一种恰好出现一次的颜色的适当顶点着色。pcf -着色具有广泛的应用,从理论图分析到网络、地理信息系统、调度和约束满足问题的实际应用。Caro, Petruševski和Škrekovski在2023年推测每个最大度Δ≥3的图都有PCF-(Δ+1)着色。在本文中,我们对一细分图的mycielskian证明了这个猜想。此外,我们确定了路径、循环、完全图、完全二部图和轮子的mycielskian的pcf色数,并提供了为这些图产生最优pcf着色的有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信