Discrete ILQG method based on high-order exponential Runge–Kutta discretization

IF 1.3 Q2 MATHEMATICS, APPLIED
Yujie Yun, Tieqiang Gang, Lijie Chen
{"title":"Discrete ILQG method based on high-order exponential Runge–Kutta discretization","authors":"Yujie Yun,&nbsp;Tieqiang Gang,&nbsp;Lijie Chen","doi":"10.1016/j.rinam.2025.100608","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ the iterative Linear Quadratic Gaussian (ILQG) method, discretized based on the high-order exponential Runge–Kutta methods, to numerically solve stochastic optimal control problems. In the sense of weak convergence, we derive a mean-square third-order scheme with an additive noise, and provide corresponding order conditions. As the analysis of order conditions is local, the analysis is transformed into a <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> error estimate of the discrete problem with control constraints. Finally, the global control law is approximated by computing the node control via the ILQG method. The numerical experiment further demonstrates the significant stability of ILQG in dealing with stochastic semilinear control problems. The proposed approach presents the advantages of simplicity and efficiency.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100608"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742500072X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we employ the iterative Linear Quadratic Gaussian (ILQG) method, discretized based on the high-order exponential Runge–Kutta methods, to numerically solve stochastic optimal control problems. In the sense of weak convergence, we derive a mean-square third-order scheme with an additive noise, and provide corresponding order conditions. As the analysis of order conditions is local, the analysis is transformed into a L error estimate of the discrete problem with control constraints. Finally, the global control law is approximated by computing the node control via the ILQG method. The numerical experiment further demonstrates the significant stability of ILQG in dealing with stochastic semilinear control problems. The proposed approach presents the advantages of simplicity and efficiency.
基于高阶指数龙格-库塔离散化的离散ILQG方法
本文采用基于高阶指数龙格-库塔方法离散化的迭代线性二次高斯(ILQG)方法,对随机最优控制问题进行数值求解。在弱收敛意义下,导出了一种具有加性噪声的均方三阶格式,并给出了相应的阶条件。由于阶条件的分析是局部的,因此将分析转化为具有控制约束的离散问题的L∞误差估计。最后,通过ILQG方法计算节点控制来逼近全局控制律。数值实验进一步证明了ILQG在处理随机半线性控制问题时的显著稳定性。该方法具有简单、高效的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信