{"title":"Experimental and molecular dynamics study on the thermal conductivity of Octamethyltrisiloxane (MDM)/Decamethyltetrasiloxane (MD2M) mixtures","authors":"Na Di, Yu Liu, Chao Liu","doi":"10.1016/j.jct.2025.107547","DOIUrl":null,"url":null,"abstract":"<div><div>Octamethyltrisiloxane (MDM)/Decamethyltetrasiloxane (MD<sub>2</sub>M) mixtures are considered one of the most suitable working fluids for high temperature Organic Rankine Cycle (ORC) systems and heat pump. As a critical thermophysical property, thermal conductivities of liquid siloxanes are important to understand heat transfer characteristics. In this study, thermal conductivities of MDM/MD<sub>2</sub>M mixtures (with MDM mass fraction <em>w</em><sub>MDM</sub> = 0, 0.30, 0.50, 0.70, 1.00) were measured using a transient hot-wire method over a temperature range of 263.15–343.15 K and pressures up to 8 MPa. Then, an empirical model was proposed to reproduce the thermal conductivity regarding temperature and pressure, yielding an average absolute deviation of less than 1 %. In addition, the thermal conductivities of the MDM/MD<sub>2</sub>M systems were studied using the non-equilibrium molecular dynamics (NEMD) simulation. The predicted values show good consistency with the experimental results, confirming both the accuracy of the established model and the suitability of the selected force field, while offering a dependable computational method for predicting thermal conductivity. This work provides essential data and theoretical support for evaluating the heat transfer performance and selecting working fluids in MDM/MD<sub>2</sub>M-based ORC systems.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"211 ","pages":"Article 107547"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425001016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Octamethyltrisiloxane (MDM)/Decamethyltetrasiloxane (MD2M) mixtures are considered one of the most suitable working fluids for high temperature Organic Rankine Cycle (ORC) systems and heat pump. As a critical thermophysical property, thermal conductivities of liquid siloxanes are important to understand heat transfer characteristics. In this study, thermal conductivities of MDM/MD2M mixtures (with MDM mass fraction wMDM = 0, 0.30, 0.50, 0.70, 1.00) were measured using a transient hot-wire method over a temperature range of 263.15–343.15 K and pressures up to 8 MPa. Then, an empirical model was proposed to reproduce the thermal conductivity regarding temperature and pressure, yielding an average absolute deviation of less than 1 %. In addition, the thermal conductivities of the MDM/MD2M systems were studied using the non-equilibrium molecular dynamics (NEMD) simulation. The predicted values show good consistency with the experimental results, confirming both the accuracy of the established model and the suitability of the selected force field, while offering a dependable computational method for predicting thermal conductivity. This work provides essential data and theoretical support for evaluating the heat transfer performance and selecting working fluids in MDM/MD2M-based ORC systems.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.