Machine learning-assisted optimization of CsPbI₃-based all-inorganic perovskite solar cells: A combined SCAPS-1D and XGBoost approach

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Usama Ghulam Mustafa , Wei Wu , Mingqing Wang , Adham Hashibon , Hafeez Anwar
{"title":"Machine learning-assisted optimization of CsPbI₃-based all-inorganic perovskite solar cells: A combined SCAPS-1D and XGBoost approach","authors":"Usama Ghulam Mustafa ,&nbsp;Wei Wu ,&nbsp;Mingqing Wang ,&nbsp;Adham Hashibon ,&nbsp;Hafeez Anwar","doi":"10.1016/j.egyai.2025.100559","DOIUrl":null,"url":null,"abstract":"<div><div>The commercialization of perovskite solar cells (PSCs) is hindered by the instability of organic components and the resource-intensive nature of experimental optimization. Machine learning (ML) is revolutionizing the discovery and optimization of photovoltaic devices by reducing reliance on conventional trial-and-error approaches. This study aims to optimize the performance of CsPbI₃-based all-inorganic PSCs using a combined SCAPS-1D and machine learning (ML) approach. We generated 56,390 unique device configurations via SCAPS-1D simulations, varying layer thicknesses and defect densities. Five ML models were trained, with XGBoost achieving the highest accuracy (R² = 0.999). Feature importance was analyzed using SHAP. Optimization increased the PCE from 15.15 % to 19.16 %, with the perovskite layer thickness (2 µm) and defect density (&lt;10¹⁵ cm⁻³) identified as critical parameters. This study highlights the potential of ML-driven optimization in perovskite solar cells, offering a systematic and data-driven approach to enhancing device efficiency and accelerating the development of next-generation photovoltaics.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100559"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The commercialization of perovskite solar cells (PSCs) is hindered by the instability of organic components and the resource-intensive nature of experimental optimization. Machine learning (ML) is revolutionizing the discovery and optimization of photovoltaic devices by reducing reliance on conventional trial-and-error approaches. This study aims to optimize the performance of CsPbI₃-based all-inorganic PSCs using a combined SCAPS-1D and machine learning (ML) approach. We generated 56,390 unique device configurations via SCAPS-1D simulations, varying layer thicknesses and defect densities. Five ML models were trained, with XGBoost achieving the highest accuracy (R² = 0.999). Feature importance was analyzed using SHAP. Optimization increased the PCE from 15.15 % to 19.16 %, with the perovskite layer thickness (2 µm) and defect density (<10¹⁵ cm⁻³) identified as critical parameters. This study highlights the potential of ML-driven optimization in perovskite solar cells, offering a systematic and data-driven approach to enhancing device efficiency and accelerating the development of next-generation photovoltaics.

Abstract Image

基于CsPbI₃的全无机钙钛矿太阳能电池的机器学习辅助优化:一种结合SCAPS-1D和XGBoost的方法
钙钛矿太阳能电池(PSCs)的商业化受到有机成分不稳定性和实验优化的资源密集型性质的阻碍。机器学习(ML)通过减少对传统试错方法的依赖,正在彻底改变光伏设备的发现和优化。该研究旨在使用SCAPS-1D和机器学习(ML)相结合的方法优化基于CsPbI₃的全无机PSCs的性能。我们通过SCAPS-1D模拟生成了56,390种不同的器件配置,改变了层厚度和缺陷密度。共训练了5个ML模型,其中XGBoost准确率最高(R²= 0.999)。采用SHAP分析特征重要性。优化后PCE从15.15%提高到19.16%,钙钛矿层厚度(2µm)和缺陷密度(10¹5 cm⁻³)被确定为关键参数。这项研究强调了机器学习驱动优化钙钛矿太阳能电池的潜力,为提高设备效率和加速下一代光伏电池的发展提供了系统和数据驱动的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信