Cobb angle prediction for adolescent idiopathic scoliosis via an explainable machine learning model

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-07-17 DOI:10.1016/j.array.2025.100455
Yu Ding , Bin Li , Xiaoyong Guo
{"title":"Cobb angle prediction for adolescent idiopathic scoliosis via an explainable machine learning model","authors":"Yu Ding ,&nbsp;Bin Li ,&nbsp;Xiaoyong Guo","doi":"10.1016/j.array.2025.100455","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to build an accurate and interpretable machine learning model capable of adolescent idiopathic scoliosis prognostication. A tree-based gradient boosting machine is incorporated with a recently proposed Shapley-value-based explanation method-TreeExplainer. Anthropometric training data are collected from a public orthopedics clinic, and each instance is characterized by nine features with a prediction target. We adopt a transfer-learning strategy that takes advantage of the additive property of tree-based gradient boosting, allowing a gradient boosting machine regressor to be trained with limited labeled examples. Cross-validation estimation shows a satisfactory performance for predicting future spine curvature (Cobb angle). The root mean square error (<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), the mean absolute percentage error (<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), and the Pearson correlation coefficient are 3.69 ± 1.23, 2.81 ± 1.69, and 0.92 ± 0.01, respectively. Moreover, the overfitting has been largely removed, and the model may be generalized well to new patients. A well-trained model is taken as the input to the TreeExplainer. The output of the TreeExplainer provides us a richer understanding that demonstrates how a feature’s value impacts the model’s prediction for every instance. The patterns identified can substantially improve the human-artificial intelligence collaboration in the clinical management of patients with adolescent idiopathic scoliosis by preventing serious scoliosis progression and reducing healthcare costs.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100455"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to build an accurate and interpretable machine learning model capable of adolescent idiopathic scoliosis prognostication. A tree-based gradient boosting machine is incorporated with a recently proposed Shapley-value-based explanation method-TreeExplainer. Anthropometric training data are collected from a public orthopedics clinic, and each instance is characterized by nine features with a prediction target. We adopt a transfer-learning strategy that takes advantage of the additive property of tree-based gradient boosting, allowing a gradient boosting machine regressor to be trained with limited labeled examples. Cross-validation estimation shows a satisfactory performance for predicting future spine curvature (Cobb angle). The root mean square error (), the mean absolute percentage error (), and the Pearson correlation coefficient are 3.69 ± 1.23, 2.81 ± 1.69, and 0.92 ± 0.01, respectively. Moreover, the overfitting has been largely removed, and the model may be generalized well to new patients. A well-trained model is taken as the input to the TreeExplainer. The output of the TreeExplainer provides us a richer understanding that demonstrates how a feature’s value impacts the model’s prediction for every instance. The patterns identified can substantially improve the human-artificial intelligence collaboration in the clinical management of patients with adolescent idiopathic scoliosis by preventing serious scoliosis progression and reducing healthcare costs.

Abstract Image

通过可解释的机器学习模型预测青少年特发性脊柱侧凸的Cobb角
本研究旨在建立一个准确且可解释的机器学习模型,用于青少年特发性脊柱侧凸的预测。将基于树的梯度增强机与最近提出的基于shapley值的解释方法treeexplainer相结合。人体测量训练数据收集自一家公共骨科诊所,每个实例具有9个特征和预测目标。我们采用了一种迁移学习策略,该策略利用了基于树的梯度增强的可加性,允许梯度增强机器回归器用有限的标记示例进行训练。交叉验证估计在预测未来脊柱曲度(Cobb角)方面表现令人满意。均方根误差(°)、平均绝对百分比误差(°)和Pearson相关系数分别为3.69±1.23、2.81±1.69和0.92±0.01。此外,过度拟合在很大程度上被去除,模型可以很好地推广到新患者。一个训练有素的模型被作为TreeExplainer的输入。TreeExplainer的输出为我们提供了更丰富的理解,演示了特征值如何影响模型对每个实例的预测。所确定的模式可以通过预防严重的脊柱侧凸进展和降低医疗成本,大大改善青少年特发性脊柱侧凸患者临床管理中的人类-人工智能协作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信