DynamoSort: Using machine learning approaches for the automatic classification of seizure dynamotypes

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Josh Wooley , Ashley Zachery-Savella , Michelle Le , Sally Y. Scofield , Kishore Jay , Josh Mosse-Robinson , Peter J. West , Karen S. Wilcox , Daria Nesterovich Anderson
{"title":"DynamoSort: Using machine learning approaches for the automatic classification of seizure dynamotypes","authors":"Josh Wooley ,&nbsp;Ashley Zachery-Savella ,&nbsp;Michelle Le ,&nbsp;Sally Y. Scofield ,&nbsp;Kishore Jay ,&nbsp;Josh Mosse-Robinson ,&nbsp;Peter J. West ,&nbsp;Karen S. Wilcox ,&nbsp;Daria Nesterovich Anderson","doi":"10.1016/j.neucom.2025.130992","DOIUrl":null,"url":null,"abstract":"<div><div>Epilepsy is characterised by unprovoked and recurring seizures, which can be electrically measured using electroencephalograms (EEG). To better understand the underlying mechanisms of seizures, researchers are exploring their temporal dynamics through the lens of dynamical systems modelling. Seizure initiation and termination patterns of spiking amplitude and frequency can be sorted into “dynamotypes”, which may be able to serve as biomarkers for intervention. However, manual classification of these dynamotypes requires trained raters and is prone to variability. To address this, we developed DynamoSort, a machine-learning algorithm for automatic seizure onset and offset classification. Dynamotype classification of real EEG data lacks a definitive ground truth, with mean inter-rater agreement at 73.4 % for onset and 64.2 % for offset types. Despite this, DynamoSort achieved a mean area under the curve (AUC) of 0.81 for onset and a mean AUC of 0.75 for offset types. Machine-human agreement was not significantly different from human-to-human agreement. To address the lack of ground truth in ratings, DynamoSort assigns probabilistic scores (-20−20), to indicate similarity to each seizure dynamotype based on spiking features, allowing for a characterization of seizure dynamics on a spectrum rather than the traditional qualitative taxonomy. DynamoSort is a straightforward, open-access tool that uses automatic labelling and probabilistic scoring to quantify subtle changes in seizure onset and offset dynamics.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130992"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016649","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is characterised by unprovoked and recurring seizures, which can be electrically measured using electroencephalograms (EEG). To better understand the underlying mechanisms of seizures, researchers are exploring their temporal dynamics through the lens of dynamical systems modelling. Seizure initiation and termination patterns of spiking amplitude and frequency can be sorted into “dynamotypes”, which may be able to serve as biomarkers for intervention. However, manual classification of these dynamotypes requires trained raters and is prone to variability. To address this, we developed DynamoSort, a machine-learning algorithm for automatic seizure onset and offset classification. Dynamotype classification of real EEG data lacks a definitive ground truth, with mean inter-rater agreement at 73.4 % for onset and 64.2 % for offset types. Despite this, DynamoSort achieved a mean area under the curve (AUC) of 0.81 for onset and a mean AUC of 0.75 for offset types. Machine-human agreement was not significantly different from human-to-human agreement. To address the lack of ground truth in ratings, DynamoSort assigns probabilistic scores (-20−20), to indicate similarity to each seizure dynamotype based on spiking features, allowing for a characterization of seizure dynamics on a spectrum rather than the traditional qualitative taxonomy. DynamoSort is a straightforward, open-access tool that uses automatic labelling and probabilistic scoring to quantify subtle changes in seizure onset and offset dynamics.
DynamoSort:使用机器学习方法对发作动力型进行自动分类
癫痫的特点是无诱因和反复发作,可使用脑电图(EEG)电测量。为了更好地理解癫痫发作的潜在机制,研究人员正在通过动态系统建模的视角探索其时间动态。癫痫发作的开始和结束模式的尖峰振幅和频率可以分类为“动力型”,这可能能够作为干预的生物标志物。然而,这些动力型的手动分类需要训练有素的评分者,并且容易发生变化。为了解决这个问题,我们开发了DynamoSort,这是一种用于自动癫痫发作和偏移分类的机器学习算法。真实脑电图数据的动力型分类缺乏明确的基础事实,起病类型的平均评分一致性为73.4 %,偏移类型的平均评分一致性为64.2 %。尽管如此,DynamoSort的平均曲线下面积(AUC)为0.81,偏移类型的平均AUC为0.75。人和机器之间的协议与人与人之间的协议没有显著差异。为了解决评级中缺乏基础真实性的问题,DynamoSort分配了概率分数(-20−20),以表明基于尖峰特征的每种发作动力型的相似性,从而允许在频谱上而不是传统的定性分类上表征发作动态。DynamoSort是一个简单、开放的工具,使用自动标记和概率评分来量化癫痫发作和偏移动态的细微变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信