ExpTamed: An exponential tamed optimizer based on Langevin SDEs

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Utku Erdoğan , Şahin Işık , Yıldıray Anagün , Gabriel Lord
{"title":"ExpTamed: An exponential tamed optimizer based on Langevin SDEs","authors":"Utku Erdoğan ,&nbsp;Şahin Işık ,&nbsp;Yıldıray Anagün ,&nbsp;Gabriel Lord","doi":"10.1016/j.neucom.2025.130949","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a new method to improve optimization by regularizing the gradients in deep learning methods based on a novel taming strategy to regulate the growth of numerical solutions for stochastic differential equations. The method, ExpTamed, enhances stability and reduces the mean-square error across a short time horizon in comparison to existing techniques. The practical effectiveness of ExpTamed is rigorously evaluated on CIFAR-10, Tiny-ImageNet, and Caltech256 across diverse architectures. In direct comparisons with prominent optimizers like Adam, ExpTamed demonstrates significant performance gains. Specifically, it achieved increases in best top-1 test accuracy ranging from 0.86 to 2.76 percentage points on CIFAR-10, and up to 4.46 percentage points on Tiny-ImageNet (without learning rate schedule). On Caltech256, ExpTamed also yielded superior accuracy, precision, and Kappa metrics. These results clearly quantify ExpTamed’s capability to deliver enhanced performance in practical deep learning applications.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130949"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016212","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new method to improve optimization by regularizing the gradients in deep learning methods based on a novel taming strategy to regulate the growth of numerical solutions for stochastic differential equations. The method, ExpTamed, enhances stability and reduces the mean-square error across a short time horizon in comparison to existing techniques. The practical effectiveness of ExpTamed is rigorously evaluated on CIFAR-10, Tiny-ImageNet, and Caltech256 across diverse architectures. In direct comparisons with prominent optimizers like Adam, ExpTamed demonstrates significant performance gains. Specifically, it achieved increases in best top-1 test accuracy ranging from 0.86 to 2.76 percentage points on CIFAR-10, and up to 4.46 percentage points on Tiny-ImageNet (without learning rate schedule). On Caltech256, ExpTamed also yielded superior accuracy, precision, and Kappa metrics. These results clearly quantify ExpTamed’s capability to deliver enhanced performance in practical deep learning applications.
ExpTamed:一个基于Langevin SDEs的指数驯服优化器
本文提出了一种基于新的驯服策略来调节随机微分方程数值解的增长,通过正则化深度学习方法中的梯度来改进优化的新方法。与现有技术相比,该方法增强了稳定性,并在短时间内减少了均方误差。expamed的实际有效性在CIFAR-10、Tiny-ImageNet和Caltech256上进行了严格的评估。在与Adam等著名优化器的直接比较中,expamed显示出显著的性能提升。具体来说,它在CIFAR-10上实现了最佳前1测试准确度的提高,范围从0.86到2.76个百分点,在Tiny-ImageNet上达到4.46个百分点(没有学习率计划)。在Caltech256上,expamed也产生了更高的准确性、精密度和Kappa指标。这些结果清楚地量化了expamed在实际深度学习应用中提供增强性能的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信