Alex Ing, Alvaro Andrades, Marco Raffaele Cosenza, Jan O. Korbel
{"title":"Integrating multimodal cancer data using deep latent variable path modelling","authors":"Alex Ing, Alvaro Andrades, Marco Raffaele Cosenza, Jan O. Korbel","doi":"10.1038/s42256-025-01052-4","DOIUrl":null,"url":null,"abstract":"<p>Cancers are commonly characterized by a complex pathology encompassing genetic, microscopic and macroscopic features, which can be probed individually using imaging and omics technologies. Integrating these data to obtain a full understanding of pathology remains challenging. We introduce a method called deep latent variable path modelling, which combines the representational power of deep learning with the capacity of path modelling to identify relationships between interacting elements in a complex system. To evaluate the capabilities of deep latent variable path modelling, we initially trained a model to map dependencies between single-nucleotide variant, methylation profiles, microRNA sequencing, RNA sequencing and histological data using breast cancer data from The Cancer Genome Atlas. This method exhibited superior performance in mapping associations between data types compared with classical path modelling. We additionally performed successful applications of the model to stratify single-cell data, identify synthetic lethal interactions using CRISPR–Cas9 screens derived from cell lines and detect histologic–transcriptional associations using spatial transcriptomic data. Results from each of these data types can then be understood with reference to the same holistic model of illness.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"14 1","pages":""},"PeriodicalIF":23.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01052-4","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cancers are commonly characterized by a complex pathology encompassing genetic, microscopic and macroscopic features, which can be probed individually using imaging and omics technologies. Integrating these data to obtain a full understanding of pathology remains challenging. We introduce a method called deep latent variable path modelling, which combines the representational power of deep learning with the capacity of path modelling to identify relationships between interacting elements in a complex system. To evaluate the capabilities of deep latent variable path modelling, we initially trained a model to map dependencies between single-nucleotide variant, methylation profiles, microRNA sequencing, RNA sequencing and histological data using breast cancer data from The Cancer Genome Atlas. This method exhibited superior performance in mapping associations between data types compared with classical path modelling. We additionally performed successful applications of the model to stratify single-cell data, identify synthetic lethal interactions using CRISPR–Cas9 screens derived from cell lines and detect histologic–transcriptional associations using spatial transcriptomic data. Results from each of these data types can then be understood with reference to the same holistic model of illness.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.