{"title":"Critical spin models from holographic disorder","authors":"Dimitris Saraidaris, Alexander Jahn","doi":"10.22331/q-2025-07-22-1808","DOIUrl":null,"url":null,"abstract":"Discrete models of holographic dualities, typically modeled by tensor networks on hyperbolic tilings, produce quantum states with a characteristic quasiperiodic disorder not present in continuum holography. In this work, we study the behavior of XXZ spin chains with such symmetries, showing that lessons learned from previous non-interacting (matchgate) tensor networks generalize to more generic Hamiltonians under holographic disorder: While the disorder breaks translation invariance, site-averaged correlations and entanglement of the disorder-free critical phase are preserved at a plateau of nonzero disorder even at large system sizes. In particular, we show numerically that the entanglement entropy curves in this disordered phase follow the expected scaling of a conformal field theory (CFT) in the continuum limit. This property is shown to be non-generic for other types of quasiperiodic disorder, only appearing when our boundary disorder ansatz is described by a \"dual\" bulk hyperbolic tiling. Our results therefore suggest the existence of a whole class of critical phases whose symmetries are derived from models of discrete holography.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"115 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-22-1808","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Discrete models of holographic dualities, typically modeled by tensor networks on hyperbolic tilings, produce quantum states with a characteristic quasiperiodic disorder not present in continuum holography. In this work, we study the behavior of XXZ spin chains with such symmetries, showing that lessons learned from previous non-interacting (matchgate) tensor networks generalize to more generic Hamiltonians under holographic disorder: While the disorder breaks translation invariance, site-averaged correlations and entanglement of the disorder-free critical phase are preserved at a plateau of nonzero disorder even at large system sizes. In particular, we show numerically that the entanglement entropy curves in this disordered phase follow the expected scaling of a conformal field theory (CFT) in the continuum limit. This property is shown to be non-generic for other types of quasiperiodic disorder, only appearing when our boundary disorder ansatz is described by a "dual" bulk hyperbolic tiling. Our results therefore suggest the existence of a whole class of critical phases whose symmetries are derived from models of discrete holography.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.