The Cramér-Rao approach and global quantum estimation of bosonic states

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-22 DOI:10.22331/q-2025-07-22-1806
Masahito Hayashi, Yingkai Ouyang
{"title":"The Cramér-Rao approach and global quantum estimation of bosonic states","authors":"Masahito Hayashi, Yingkai Ouyang","doi":"10.22331/q-2025-07-22-1806","DOIUrl":null,"url":null,"abstract":"Quantum state estimation is a fundamental task in quantum information theory, where one estimates real parameters continuously embedded in a family of quantum states. In the theory of quantum state estimation, the widely used Cramér Rao approach which considers local estimation gives the ultimate precision bound of quantum state estimation in terms of the quantum Fisher information. However practical scenarios need not offer much prior information about the parameters to be estimated, and the local estimation setting need not apply. In general, it is unclear whether the Cramér-Rao approach is applicable for global estimation instead of local estimation. In this paper, we find situations where the Cramér-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting, where we only use one copy of the bosonic quantum state in the large number of bosons setting. Our result highlights the importance of caution when using the results of the Cramér-Rao approach to extrapolate to the global estimation setting.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"32 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-22-1806","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum state estimation is a fundamental task in quantum information theory, where one estimates real parameters continuously embedded in a family of quantum states. In the theory of quantum state estimation, the widely used Cramér Rao approach which considers local estimation gives the ultimate precision bound of quantum state estimation in terms of the quantum Fisher information. However practical scenarios need not offer much prior information about the parameters to be estimated, and the local estimation setting need not apply. In general, it is unclear whether the Cramér-Rao approach is applicable for global estimation instead of local estimation. In this paper, we find situations where the Cramér-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting, where we only use one copy of the bosonic quantum state in the large number of bosons setting. Our result highlights the importance of caution when using the results of the Cramér-Rao approach to extrapolate to the global estimation setting.
cram - rao方法与玻色子态的全局量子估计
量子态估计是量子信息论中的一项基本任务,它是对嵌入在一组量子态中的连续实参数进行估计。在量子态估计理论中,广泛使用的考虑局部估计的cram Rao方法根据量子Fisher信息给出了量子态估计的最终精度界。然而,实际场景不需要提供太多关于待估计参数的先验信息,局部估计设置也不需要应用。一般来说,尚不清楚cram r- rao方法是否适用于全局估计而不是局部估计。在本文中,我们发现了在非iid环境下,cram r- rao方法对涉及玻色子族的量子态估计问题有效和无效的情况,其中我们在大量玻色子环境中只使用玻色子量子态的一个副本。我们的结果强调了在使用cram - rao方法的结果外推到全局估计设置时谨慎的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信