Neural Projected Quantum Dynamics: a systematic study

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-22 DOI:10.22331/q-2025-07-22-1803
Luca Gravina, Vincenzo Savona, Filippo Vicentini
{"title":"Neural Projected Quantum Dynamics: a systematic study","authors":"Luca Gravina, Vincenzo Savona, Filippo Vicentini","doi":"10.22331/q-2025-07-22-1803","DOIUrl":null,"url":null,"abstract":"We investigate the challenge of classical simulation of unitary quantum dynamics with variational Monte Carlo approaches, addressing the instabilities and high computational demands of existing methods. By systematically analyzing the convergence of stochastic infidelity optimizations, examining the variance properties of key stochastic estimators, and evaluating the error scaling of multiple dynamical discretization schemes, we provide a thorough formalization and significant improvements to the projected time-dependent Variational Monte Carlo (p-tVMC) method. We benchmark our approach on a two-dimensional Ising quench, achieving state-of-the-art performance. This work establishes p-tVMC as a powerful framework for simulating the dynamics of large-scale two-dimensional quantum systems, surpassing alternative VMC strategies on the investigated benchmark problems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"31 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-22-1803","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the challenge of classical simulation of unitary quantum dynamics with variational Monte Carlo approaches, addressing the instabilities and high computational demands of existing methods. By systematically analyzing the convergence of stochastic infidelity optimizations, examining the variance properties of key stochastic estimators, and evaluating the error scaling of multiple dynamical discretization schemes, we provide a thorough formalization and significant improvements to the projected time-dependent Variational Monte Carlo (p-tVMC) method. We benchmark our approach on a two-dimensional Ising quench, achieving state-of-the-art performance. This work establishes p-tVMC as a powerful framework for simulating the dynamics of large-scale two-dimensional quantum systems, surpassing alternative VMC strategies on the investigated benchmark problems.
神经投射量子动力学:一个系统的研究
我们研究了用变分蒙特卡罗方法模拟酉量子动力学的挑战,解决了现有方法的不稳定性和高计算需求。通过系统地分析随机不忠实优化的收敛性,检查关键随机估计量的方差特性,以及评估多个动态离散化方案的误差标度,我们对投影时相关变分蒙特卡罗(p-tVMC)方法进行了彻底的形式化和重大改进。我们以二维伊辛淬火为基准,实现了最先进的性能。这项工作建立了p-tVMC作为模拟大规模二维量子系统动力学的强大框架,在所研究的基准问题上超越了其他VMC策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信