V. K. Bhartiya, T. Kim, J. Li, T. P. Darlington, D. J. Rizzo, Y. Gu, S. Fan, C. Nelson, J. W. Freeland, X. Xu, D. N. Basov, J. Pelliciari, A. F. May, C. Mazzoli, V. Bisogni
{"title":"Magnetic excitations and absence of charge order in the van der Waals ferromagnet Fe4.75GeTe2","authors":"V. K. Bhartiya, T. Kim, J. Li, T. P. Darlington, D. J. Rizzo, Y. Gu, S. Fan, C. Nelson, J. W. Freeland, X. Xu, D. N. Basov, J. Pelliciari, A. F. May, C. Mazzoli, V. Bisogni","doi":"10.1038/s41535-025-00803-1","DOIUrl":null,"url":null,"abstract":"<p>Understanding the ground state of van der Waals (vdW) magnets is crucial for designing devices leveraging these platforms. Here, we investigate the magnetic excitations and charge order in Fe<sub>4.75</sub>GeTe<sub>2</sub>, a vdW ferromagnet with ≈ 315 K Curie temperature. Using Fe <i>L</i><sub>3</sub>-edge resonant inelastic X-ray scattering, we observe a dual nature of magnetic excitations, comprising a coherent magnon and a broad non-dispersive continuum extending up to 150 meV, 50% higher than in Fe<sub>2.72</sub>GeTe<sub>2</sub>. The continuum intensity is sinusoidally modulated along the stacking direction <i>L</i>, with a period matching the inter-slab distance. Our results indicate that while the dual character of the magnetic excitations is generic to Fe-Ge-Te vdW magnets, Fe<sub>4.75</sub>GeTe<sub>2</sub>exhibits a longer out-of-plane magnetic correlation length, suggesting enhanced 3D magnetic character. Furthermore, resonant X-ray diffraction reveals that previously reported ±(1/3, 1/3, <i>L</i>) peaks originate from crystal structure rather than from charge order.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"83 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00803-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the ground state of van der Waals (vdW) magnets is crucial for designing devices leveraging these platforms. Here, we investigate the magnetic excitations and charge order in Fe4.75GeTe2, a vdW ferromagnet with ≈ 315 K Curie temperature. Using Fe L3-edge resonant inelastic X-ray scattering, we observe a dual nature of magnetic excitations, comprising a coherent magnon and a broad non-dispersive continuum extending up to 150 meV, 50% higher than in Fe2.72GeTe2. The continuum intensity is sinusoidally modulated along the stacking direction L, with a period matching the inter-slab distance. Our results indicate that while the dual character of the magnetic excitations is generic to Fe-Ge-Te vdW magnets, Fe4.75GeTe2exhibits a longer out-of-plane magnetic correlation length, suggesting enhanced 3D magnetic character. Furthermore, resonant X-ray diffraction reveals that previously reported ±(1/3, 1/3, L) peaks originate from crystal structure rather than from charge order.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.