Spatial Bayesian semi-parametric Cox-Leroux modelling of stroke patient hospitalization: aspects on survival.

IF 1 4区 医学 Q4 HEALTH CARE SCIENCES & SERVICES
Geospatial Health Pub Date : 2025-07-07 Epub Date: 2025-07-21 DOI:10.4081/gh.2025.1380
Aswi Aswi, Bobby Poerwanto, Nurussyariah Hammado, Nurwan Nurwan, Oktaviana Oktaviana, Siti Djawijah, Susanna Cramb
{"title":"Spatial Bayesian semi-parametric Cox-Leroux modelling of stroke patient hospitalization: aspects on survival.","authors":"Aswi Aswi, Bobby Poerwanto, Nurussyariah Hammado, Nurwan Nurwan, Oktaviana Oktaviana, Siti Djawijah, Susanna Cramb","doi":"10.4081/gh.2025.1380","DOIUrl":null,"url":null,"abstract":"<p><p>Survival analysis consists of a set of statistical methods used to analyse data where the outcome variable is the time until an event occurs. When such data are collected across distinct spatial regions, incorporating spatial information into survival models can be beneficial. A common approach is to apply an intrinsic Conditional Autoregressive (CAR) prior to an area-level frailty term to account for spatial correlation between regions. We extend the Bayesian Cox semi-parametric model by incorporating a spatial frailty term using the Leroux CAR prior. The aim was to improve the model's ability to describe stroke hospitalisations at the Stroke Centre Hospital in Makassar, Indonesia with a focus on understanding the geographic distribution of hospitalisations, Length of Stay (LOS) and factors influencing patient outcomes. The dataset was obtained from medical records of stroke patients admitted to this hospital (April 2021-June 2024). Variables included LOS, discharge outcomes, sex, age, stroke type, uric acid levels, hypertension, hypercholesterolemia, and diabetes mellitus. Our findings indicate that diabetes, stroke type and the presence of hypercholesterolemia significantly influence recovery rates in stroke patients. Specifically, patients with diabetes had lower recovery, while those with hypercholesterolemia and ischemic stroke patients had faster recovery compared to those with haemorrhagic strokes.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"20 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2025.1380","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Survival analysis consists of a set of statistical methods used to analyse data where the outcome variable is the time until an event occurs. When such data are collected across distinct spatial regions, incorporating spatial information into survival models can be beneficial. A common approach is to apply an intrinsic Conditional Autoregressive (CAR) prior to an area-level frailty term to account for spatial correlation between regions. We extend the Bayesian Cox semi-parametric model by incorporating a spatial frailty term using the Leroux CAR prior. The aim was to improve the model's ability to describe stroke hospitalisations at the Stroke Centre Hospital in Makassar, Indonesia with a focus on understanding the geographic distribution of hospitalisations, Length of Stay (LOS) and factors influencing patient outcomes. The dataset was obtained from medical records of stroke patients admitted to this hospital (April 2021-June 2024). Variables included LOS, discharge outcomes, sex, age, stroke type, uric acid levels, hypertension, hypercholesterolemia, and diabetes mellitus. Our findings indicate that diabetes, stroke type and the presence of hypercholesterolemia significantly influence recovery rates in stroke patients. Specifically, patients with diabetes had lower recovery, while those with hypercholesterolemia and ischemic stroke patients had faster recovery compared to those with haemorrhagic strokes.

脑卒中患者住院的空间贝叶斯半参数Cox-Leroux模型:生存方面。
生存分析包括一组用于分析数据的统计方法,其中结果变量是事件发生之前的时间。当这些数据在不同的空间区域收集时,将空间信息纳入生存模型可能是有益的。一种常见的方法是在区域级脆弱性项之前应用内在条件自回归(CAR)来解释区域之间的空间相关性。我们通过使用Leroux CAR先验纳入空间脆弱性项来扩展贝叶斯Cox半参数模型。目的是提高模型描述印尼望加锡中风中心医院中风住院情况的能力,重点是了解住院的地理分布、住院时间(LOS)和影响患者预后的因素。数据集来自该医院入院的脑卒中患者的医疗记录(2021年4月- 2024年6月)。变量包括LOS、出院结果、性别、年龄、中风类型、尿酸水平、高血压、高胆固醇血症和糖尿病。我们的研究结果表明,糖尿病、脑卒中类型和高胆固醇血症的存在显著影响脑卒中患者的康复率。具体来说,糖尿病患者的恢复速度较慢,而高胆固醇血症和缺血性中风患者的恢复速度比出血性中风患者快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geospatial Health
Geospatial Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
2.40
自引率
11.80%
发文量
48
审稿时长
12 months
期刊介绍: The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信