Integrated Modeling of Digital-Motor and Clinician-Reported Outcomes Using Item Response Theory: Towards Powerful Trials for Rare Neurological Diseases.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Alzahra Hamdan, Andreas Traschütz, Lukas Beichert, Xiaomei Chen, Cynthia Gagnon, Bart P van de Warrenburg, Filippo M Santorelli, Nazlı Başak, Giulia Coarelli, Rita Horvath, Stephan Klebe, Rebecca Schüle, Andrew C Hooker, Matthis Synofzik, Mats O Karlsson
{"title":"Integrated Modeling of Digital-Motor and Clinician-Reported Outcomes Using Item Response Theory: Towards Powerful Trials for Rare Neurological Diseases.","authors":"Alzahra Hamdan, Andreas Traschütz, Lukas Beichert, Xiaomei Chen, Cynthia Gagnon, Bart P van de Warrenburg, Filippo M Santorelli, Nazlı Başak, Giulia Coarelli, Rita Horvath, Stephan Klebe, Rebecca Schüle, Andrew C Hooker, Matthis Synofzik, Mats O Karlsson","doi":"10.1002/psp4.70081","DOIUrl":null,"url":null,"abstract":"<p><p>Robust and highly sensitive outcomes are crucial for small trials in rare diseases. Combining different outcome types might improve sensitivity to identify disease severity and progression, yet innovative methodologies are scarce. Here we develop an Item Response Theory framework that allows integrated modeling of both continuous and categorical outcomes (ccIRT). With degenerative ataxias, a group of rare neurological coordination diseases, as a showcase, we developed a ccIRT model integrating two ataxia outcome types: a clinician-reported outcome (Scale for the Assessment and Rating of Ataxia; SARA; categorical data) and digital-motor outcomes for gait and limb coordination (continuous data). The ccIRT model leveraged data from 331 assessments from a natural history study for spastic ataxias. The model describes SARA items and digital-motor outcomes data as functions of a common underlying ataxia severity construct, evaluating 9 gait and 17 limb coordination digital-motor measures for their ability to add to SARA in estimating individual ataxia severity levels. Based on our proposed workflow for assessing digital-motor outcomes in ccIRT models, the final model selected three digital gait and three limb coordination measures, reducing average uncertainty in ataxia severity estimates by 49% (10% SD) compared to the SARA-only IRT model. Trial simulations showed a 49% and 61% reduction in sample sizes needed to detect disease-modifying effects in two genotypes. Overall, our ccIRT framework for combining multiple outcome domains, even of different variable types, facilitates a more precise estimation of disease severity and a higher power, which is particularly relevant for rare diseases with inherently small and short trials. Trial Registration: ClinicalTrials.gov: NCT04297891.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Robust and highly sensitive outcomes are crucial for small trials in rare diseases. Combining different outcome types might improve sensitivity to identify disease severity and progression, yet innovative methodologies are scarce. Here we develop an Item Response Theory framework that allows integrated modeling of both continuous and categorical outcomes (ccIRT). With degenerative ataxias, a group of rare neurological coordination diseases, as a showcase, we developed a ccIRT model integrating two ataxia outcome types: a clinician-reported outcome (Scale for the Assessment and Rating of Ataxia; SARA; categorical data) and digital-motor outcomes for gait and limb coordination (continuous data). The ccIRT model leveraged data from 331 assessments from a natural history study for spastic ataxias. The model describes SARA items and digital-motor outcomes data as functions of a common underlying ataxia severity construct, evaluating 9 gait and 17 limb coordination digital-motor measures for their ability to add to SARA in estimating individual ataxia severity levels. Based on our proposed workflow for assessing digital-motor outcomes in ccIRT models, the final model selected three digital gait and three limb coordination measures, reducing average uncertainty in ataxia severity estimates by 49% (10% SD) compared to the SARA-only IRT model. Trial simulations showed a 49% and 61% reduction in sample sizes needed to detect disease-modifying effects in two genotypes. Overall, our ccIRT framework for combining multiple outcome domains, even of different variable types, facilitates a more precise estimation of disease severity and a higher power, which is particularly relevant for rare diseases with inherently small and short trials. Trial Registration: ClinicalTrials.gov: NCT04297891.

使用项目反应理论对数字运动和临床报告结果的综合建模:对罕见神经系统疾病的有力试验。
对于罕见疾病的小型试验来说,可靠和高度敏感的结果至关重要。结合不同的结果类型可能会提高识别疾病严重程度和进展的敏感性,但创新的方法很少。在这里,我们开发了一个项目反应理论框架,允许对连续和分类结果(ccIRT)进行集成建模。以退行性共济失调(一组罕见的神经协调疾病)为例,我们开发了一个ccIRT模型,整合了两种共济失调结果类型:临床报告的结果(共济失调评估和评级量表;萨拉;分类数据)和步态和肢体协调的数字运动结果(连续数据)。ccIRT模型利用了来自痉挛性共济失调自然史研究的331项评估数据。该模型将SARA项目和数字运动结果数据描述为共同的潜在共济失调严重程度结构的功能,评估了9种步态和17种肢体协调数字运动测量方法在估计个体共济失调严重程度时增加SARA的能力。基于我们提出的ccIRT模型中评估数字运动结果的工作流程,最终模型选择了三种数字步态和三种肢体协调措施,与仅sara的IRT模型相比,将失调严重程度估计的平均不确定性降低了49% (10% SD)。试验模拟显示,检测两种基因型的疾病修饰效应所需的样本量分别减少了49%和61%。总的来说,我们的ccIRT框架结合了多个结果域,即使是不同的变量类型,也有助于更精确地估计疾病的严重程度和更高的功率,这与固有的小而短的试验的罕见疾病特别相关。试验注册:ClinicalTrials.gov: NCT04297891。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信