ASVBM: Structural variant benchmarking with local joint analysis for multiple callsets.

IF 4.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-06-29 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.06.045
Peizheng Mu, Xiangyan Feng, Lanxin Tong, Jie Huang, Chaoqun Zhu, Fei Wang, Wei Quan, Yuanjun Ma, Yucui Dong, Xiao Zhu
{"title":"ASVBM: Structural variant benchmarking with local joint analysis for multiple callsets.","authors":"Peizheng Mu, Xiangyan Feng, Lanxin Tong, Jie Huang, Chaoqun Zhu, Fei Wang, Wei Quan, Yuanjun Ma, Yucui Dong, Xiao Zhu","doi":"10.1016/j.csbj.2025.06.045","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate benchmarking of structural variant (SV) detection is essential for advancing the development and application of human whole-genome sequencing (WGS). A fundamental challenge in benchmarking SV detection results is determining whether two SVs represent the same event. Differences in the variation-awareness and strategic implementation of aligners inherently constrain SV detection algorithms that rely on alignment-based approaches. Traditional benchmarking, which primarily focuses on comparing and matching individual variants, makes it difficult to capture the relationships between multiple adjacent variants. We introduced ASVBM, an improved benchmarking framework that introduces the notion of latent positives and leverages a joint analysis and validation strategy based on local variants. This performance improvement arose from the discovery that multiple smaller variants are nearly equivalent to a larger variant. We comprehensively evaluated the performance of six state-of-the-art variant calling pipelines using real WGS datasets. According to multiple matching criteria, ASVBM employs a joint analysis strategy to uncover potential equivalences between the callset and the benchmark set, thereby reducing false mismatches caused by differences in variant representation. ASVBM is available at https://github.com/zhuxiao/asvbm.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2851-2862"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate benchmarking of structural variant (SV) detection is essential for advancing the development and application of human whole-genome sequencing (WGS). A fundamental challenge in benchmarking SV detection results is determining whether two SVs represent the same event. Differences in the variation-awareness and strategic implementation of aligners inherently constrain SV detection algorithms that rely on alignment-based approaches. Traditional benchmarking, which primarily focuses on comparing and matching individual variants, makes it difficult to capture the relationships between multiple adjacent variants. We introduced ASVBM, an improved benchmarking framework that introduces the notion of latent positives and leverages a joint analysis and validation strategy based on local variants. This performance improvement arose from the discovery that multiple smaller variants are nearly equivalent to a larger variant. We comprehensively evaluated the performance of six state-of-the-art variant calling pipelines using real WGS datasets. According to multiple matching criteria, ASVBM employs a joint analysis strategy to uncover potential equivalences between the callset and the benchmark set, thereby reducing false mismatches caused by differences in variant representation. ASVBM is available at https://github.com/zhuxiao/asvbm.

基于局部联合分析的多调用集结构变量基准测试。
结构变异(SV)检测的准确对标对于推进人类全基因组测序(WGS)的发展和应用至关重要。对SV检测结果进行基准测试的一个基本挑战是确定两个SV是否代表相同的事件。对准器的变化感知和策略实现的差异固有地限制了依赖于基于对准的方法的SV检测算法。传统的基准测试主要关注于比较和匹配单个变量,这使得很难捕获多个相邻变量之间的关系。我们介绍了ASVBM,这是一个改进的基准测试框架,它引入了潜在阳性的概念,并利用了基于局部变异的联合分析和验证策略。这种性能改进源于发现多个较小的变体几乎等同于一个较大的变体。我们使用真实的WGS数据集全面评估了六个最先进的变体调用管道的性能。根据多个匹配标准,ASVBM采用联合分析策略来发现调用集和基准集之间潜在的等价性,从而减少由于变体表示差异而导致的错误不匹配。ASVBM可在https://github.com/zhuxiao/asvbm上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信