Kavipriya Gananathan, D Manjula, Vijayan Sugumaran
{"title":"DTIP-WINDGRU a novel drug-target interaction prediction with wind-enhanced gated recurrent unit.","authors":"Kavipriya Gananathan, D Manjula, Vijayan Sugumaran","doi":"10.1186/s12859-025-06141-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identification of drug target interactions (DTI) is an important part of the drug discovery process. Since prediction of DTI using laboratory tests is time consuming and laborious, automated tools using computational intelligence (CI) techniques become essential. The prediction of DTI is a challenging process due to the absence of known drug-target relationship and no experimentally verified negative samples. The datasets with limited or unbalanced data, do not perform well. The models that use heterogeneous networks, non-linear fusion techniques, and heuristic similarity selection may need a lot of computational power and experience to implement and fine-tune. The latest developments in machine learning (ML) and deep learning (DL) models can be employed for effective DTI prediction process.</p><p><strong>Results: </strong>To that end, this study develops a novel DTI Prediction model, namely, DTIP-WINDGRU Drug-Target Interaction Prediction with Wind-Enhanced GRU. The major aim is to determine the DTIs in both labelled and unlabelled samples accurately compared to traditional wet lab experiments. To accomplish this, the proposed DTIP-WINDGRU model primarily performs pre-processing and class labelling. In addition, drug-to-drug (D-D) and target-to-target (T-T) interactions are employed to initialize the weights of the GRU model and are employed for the, DTI prediction process. Finally, the Wind Driven Optimization (WDO) algorithm is utilized to optimally choose the hyperparameters involved in the GRU model.</p><p><strong>Conclusions: </strong>For ensuring the effectual prediction results of the DTIP-WINDGRU model, a widespread experimentation process was carried out using four datasets. This comprehensive comparative study highlighted the better performance of the DTIP-WINDGRU model over existing techniques.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"185"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06141-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Identification of drug target interactions (DTI) is an important part of the drug discovery process. Since prediction of DTI using laboratory tests is time consuming and laborious, automated tools using computational intelligence (CI) techniques become essential. The prediction of DTI is a challenging process due to the absence of known drug-target relationship and no experimentally verified negative samples. The datasets with limited or unbalanced data, do not perform well. The models that use heterogeneous networks, non-linear fusion techniques, and heuristic similarity selection may need a lot of computational power and experience to implement and fine-tune. The latest developments in machine learning (ML) and deep learning (DL) models can be employed for effective DTI prediction process.
Results: To that end, this study develops a novel DTI Prediction model, namely, DTIP-WINDGRU Drug-Target Interaction Prediction with Wind-Enhanced GRU. The major aim is to determine the DTIs in both labelled and unlabelled samples accurately compared to traditional wet lab experiments. To accomplish this, the proposed DTIP-WINDGRU model primarily performs pre-processing and class labelling. In addition, drug-to-drug (D-D) and target-to-target (T-T) interactions are employed to initialize the weights of the GRU model and are employed for the, DTI prediction process. Finally, the Wind Driven Optimization (WDO) algorithm is utilized to optimally choose the hyperparameters involved in the GRU model.
Conclusions: For ensuring the effectual prediction results of the DTIP-WINDGRU model, a widespread experimentation process was carried out using four datasets. This comprehensive comparative study highlighted the better performance of the DTIP-WINDGRU model over existing techniques.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.