Joshua M. Lawrence, Rachel M. Egan, Laura T. Wey, Karan Bali, Xiaolong Chen, Darius Kosmützky, Mairi Eyres, Lan Nan, Mary H. Wood, Marc M. Nowaczyk, Christopher J. Howe* and Jenny Z. Zhang*,
{"title":"Dissecting Bioelectrical Networks in Photosynthetic Membranes with Electrochemistry","authors":"Joshua M. Lawrence, Rachel M. Egan, Laura T. Wey, Karan Bali, Xiaolong Chen, Darius Kosmützky, Mairi Eyres, Lan Nan, Mary H. Wood, Marc M. Nowaczyk, Christopher J. Howe* and Jenny Z. Zhang*, ","doi":"10.1021/jacs.5c08519","DOIUrl":null,"url":null,"abstract":"<p >Photosynthetic membranes contain complex networks of redox proteins and molecules, which direct electrons along various energy-to-chemical interconversion reactions important for sustaining life on Earth. Analyzing and disentangling the mechanisms, regulation, and interdependencies of these electron transfer pathways is extremely difficult, owing to the large number of interacting components in the native membrane environment. While electrochemistry is well established for studying electron transfer in purified proteins, it has proved difficult to wire into proteins within their native membrane environments and even harder to probe on a systems-level the electron transfer networks they are entangled within. Here, we show how photosynthetic membranes from cyanobacteria can be wired to electrodes to access their complex electron transfer networks. Measurements of native membranes with structured electrodes revealed distinctive electrochemical signatures, enabling analysis from the scale of individual proteins to entire biochemical pathways as well as their interplay. This includes measurements of overlapping photosynthetic and respiratory pathways, the redox activities of membrane-bound quinones, along with validation using <i>in operando</i> spectroscopic measurements. Importantly, we further demonstrated extraction of electrons from native membrane-bound Photosystem I at −600 mV versus SHE, which is ∼1 V more negative than from purified photosystems. This finding opens up opportunities for biotechnologies for solar electricity, fuel, and chemical generation. We foresee this electrochemical method being adapted to analyze other photosynthetic and nonphotosynthetic membranes, as well as aiding the development of new biocatalytic, biohybrid, and biomimetic systems.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 30","pages":"26907–26916"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c08519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photosynthetic membranes contain complex networks of redox proteins and molecules, which direct electrons along various energy-to-chemical interconversion reactions important for sustaining life on Earth. Analyzing and disentangling the mechanisms, regulation, and interdependencies of these electron transfer pathways is extremely difficult, owing to the large number of interacting components in the native membrane environment. While electrochemistry is well established for studying electron transfer in purified proteins, it has proved difficult to wire into proteins within their native membrane environments and even harder to probe on a systems-level the electron transfer networks they are entangled within. Here, we show how photosynthetic membranes from cyanobacteria can be wired to electrodes to access their complex electron transfer networks. Measurements of native membranes with structured electrodes revealed distinctive electrochemical signatures, enabling analysis from the scale of individual proteins to entire biochemical pathways as well as their interplay. This includes measurements of overlapping photosynthetic and respiratory pathways, the redox activities of membrane-bound quinones, along with validation using in operando spectroscopic measurements. Importantly, we further demonstrated extraction of electrons from native membrane-bound Photosystem I at −600 mV versus SHE, which is ∼1 V more negative than from purified photosystems. This finding opens up opportunities for biotechnologies for solar electricity, fuel, and chemical generation. We foresee this electrochemical method being adapted to analyze other photosynthetic and nonphotosynthetic membranes, as well as aiding the development of new biocatalytic, biohybrid, and biomimetic systems.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.