Hypergolic droplet‒film interaction dynamics at high temperatures

IF 9.1
Droplet Pub Date : 2025-03-28 DOI:10.1002/dro2.70003
Yuxin Song, Zuohua Huang, Chenglong Tang
{"title":"Hypergolic droplet‒film interaction dynamics at high temperatures","authors":"Yuxin Song,&nbsp;Zuohua Huang,&nbsp;Chenglong Tang","doi":"10.1002/dro2.70003","DOIUrl":null,"url":null,"abstract":"<p>Liquid film cooling serves as a critical thermal protection mechanism in rocket thrusters. The interaction between oxidizer droplet, which is deposited from mainstream region of thrust chamber, and fuel film on the wall inevitably influences cooling efficiency, which is poorly understood in existing research. This study experimentally investigated hypergolic reaction between white fuming nitric acid droplet and ionic liquid fuel film at elevated wall temperature <i>T</i><sub>w</sub> using synchronized high-speed and infrared thermography. Results show that reaction progresses through inertia-dominant spreading, mixing, and culminates in intense liquid-phase explosion (micro-explosion). An elevated <i>T</i><sub>w</sub> intensifies micro-explosion, increasing the risk of wall exposure and leading to the decline of cooling efficiency. Paradoxically, the increase in local film temperature inversely correlates with <i>T</i><sub>w</sub>, which is related to reduced explosion delay time. These findings first provide thermal and hydrodynamic data essential for the design of future thermal protection measures for small hypergolic liquid rocket thrusters and offer theoretical basis for optimizing liquid film cooling systems in bipropellant propulsion architectures.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 3","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid film cooling serves as a critical thermal protection mechanism in rocket thrusters. The interaction between oxidizer droplet, which is deposited from mainstream region of thrust chamber, and fuel film on the wall inevitably influences cooling efficiency, which is poorly understood in existing research. This study experimentally investigated hypergolic reaction between white fuming nitric acid droplet and ionic liquid fuel film at elevated wall temperature Tw using synchronized high-speed and infrared thermography. Results show that reaction progresses through inertia-dominant spreading, mixing, and culminates in intense liquid-phase explosion (micro-explosion). An elevated Tw intensifies micro-explosion, increasing the risk of wall exposure and leading to the decline of cooling efficiency. Paradoxically, the increase in local film temperature inversely correlates with Tw, which is related to reduced explosion delay time. These findings first provide thermal and hydrodynamic data essential for the design of future thermal protection measures for small hypergolic liquid rocket thrusters and offer theoretical basis for optimizing liquid film cooling systems in bipropellant propulsion architectures.

Abstract Image

高温下自燃液滴-膜相互作用动力学
在火箭推进器中,液膜冷却是一种重要的热保护机制。从推力室主流区域沉积的氧化液滴与壁面燃料膜之间的相互作用不可避免地影响冷却效率,这在现有的研究中知之甚少。本文采用同步高速红外热像仪对白色发烟硝酸液滴与离子液体燃料膜在高壁温Tw下的自燃反应进行了实验研究。结果表明,反应过程以惯性为主的扩散、混合为主,最终形成强烈的液相爆炸(微爆炸)。Tw升高会加剧微爆炸,增加壁面暴露的风险,导致冷却效率下降。矛盾的是,局部膜温度的升高与Tw成反比,这与爆炸延迟时间的缩短有关。这些发现首先为未来小型自燃液体火箭推进器热防护措施的设计提供了必要的热学和流体动力学数据,并为优化双推进剂推进结构中的液膜冷却系统提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信