Enhancing Credit Risk Management Through Integration of Multiple Imputation Methodology and Long-Term Survival Modelling

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jacob Majakwara, Patrick L. Mthisi, Honest W. Chipoyera
{"title":"Enhancing Credit Risk Management Through Integration of Multiple Imputation Methodology and Long-Term Survival Modelling","authors":"Jacob Majakwara,&nbsp;Patrick L. Mthisi,&nbsp;Honest W. Chipoyera","doi":"10.1002/asmb.70027","DOIUrl":null,"url":null,"abstract":"<p>Credit risk management plays a crucial role in financial institutions by identifying, assessing and controlling the credit risks arising from lending activities. However, missing data pose a common problem in credit risk modelling, leading to biased estimates and a loss of statistical power. To address this issue and improve predictive accuracy, multiple imputation methods are increasingly employed. This study evaluates the performance of the Multivariate Imputation by Chained Equations (MICE) method in identifying factors associated with time to default, using the publicly available Prosper personal loan data. The analysis is conducted within the framework of mixture cure rate models based on the generalised gamma family of distributions. This research is the first of its kind to integrate the MICE approach into mixture cure rate modelling. The flexibility of the generalised gamma distribution was utilised to select the optimal mixture cure rate model. The estimated cure rate using complete cases (CC) was higher than that obtained using MICE imputation. This highlights the potential pitfalls of solely relying on CC analysis in survival analysis.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Credit risk management plays a crucial role in financial institutions by identifying, assessing and controlling the credit risks arising from lending activities. However, missing data pose a common problem in credit risk modelling, leading to biased estimates and a loss of statistical power. To address this issue and improve predictive accuracy, multiple imputation methods are increasingly employed. This study evaluates the performance of the Multivariate Imputation by Chained Equations (MICE) method in identifying factors associated with time to default, using the publicly available Prosper personal loan data. The analysis is conducted within the framework of mixture cure rate models based on the generalised gamma family of distributions. This research is the first of its kind to integrate the MICE approach into mixture cure rate modelling. The flexibility of the generalised gamma distribution was utilised to select the optimal mixture cure rate model. The estimated cure rate using complete cases (CC) was higher than that obtained using MICE imputation. This highlights the potential pitfalls of solely relying on CC analysis in survival analysis.

Abstract Image

结合多重归算方法和长期生存模型加强信用风险管理
信贷风险管理通过识别、评估和控制贷款活动产生的信贷风险,在金融机构中起着至关重要的作用。然而,在信用风险建模中,数据缺失是一个常见的问题,它会导致有偏差的估计和统计能力的丧失。为了解决这一问题并提高预测精度,越来越多地采用了多种插值方法。本研究使用公开可用的Prosper个人贷款数据,通过链式方程(MICE)方法评估多元Imputation在识别与违约时间相关因素方面的表现。分析是在基于广义伽玛族分布的混合固化率模型框架内进行的。这项研究是同类研究中首次将MICE方法整合到混合固化速率模型中。利用广义伽玛分布的灵活性选择最优混合固化率模型。使用完整病例(CC)的估计治愈率高于使用小鼠植入获得的治愈率。这突出了在生存分析中单纯依赖CC分析的潜在缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信