Numerical Simulation of Mixing Enhancement in a Single Screw Extruder by Different Internal Baffles

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Huiwen Yu, Yuanyao Wang, Lingcao Tan, Jiarong Huang, Baiping Xu
{"title":"Numerical Simulation of Mixing Enhancement in a Single Screw Extruder by Different Internal Baffles","authors":"Huiwen Yu,&nbsp;Yuanyao Wang,&nbsp;Lingcao Tan,&nbsp;Jiarong Huang,&nbsp;Baiping Xu","doi":"10.1002/mats.202500009","DOIUrl":null,"url":null,"abstract":"<p>The metering section of an industrial-scale single screw extruder is modeled, and two kinds of discontinuous baffles, three rows of plate baffles, and two types of plow-shaped baffles, arranged in staggered or parallel ways, are proposed to improve the distributive and dispersive mixing. Considering the narrow gap between the screw and barrel, the finite element method along with the mesh superposition technique is applied to solve fully 3D isothermal flow fields where the fluid is assumed to obey the Carreau constitutive model. The computation codes are successfully developed to achieve particle tracking using the fourth-order Runge–Kutta scheme. Distributive mixing is evaluated in terms of the evolution of tracer particles and Poincaré sections. Dispersive mixing is then examined in terms of shear rates, mixing index, distribution probability function of mixing index, and its integral function for particles tracking with time. For the same pressure drop and the same screw rotating speed, when compared to the conventional single screw, the numerical simulation results showed that the screw with staggered plow-shaped baffles achieved better distributive mixing with the output nearly unchanged while three rows of plate baffles significantly enhanced both distributive and dispersive mixing at the cost of output reduction by 13.2%.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202500009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202500009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The metering section of an industrial-scale single screw extruder is modeled, and two kinds of discontinuous baffles, three rows of plate baffles, and two types of plow-shaped baffles, arranged in staggered or parallel ways, are proposed to improve the distributive and dispersive mixing. Considering the narrow gap between the screw and barrel, the finite element method along with the mesh superposition technique is applied to solve fully 3D isothermal flow fields where the fluid is assumed to obey the Carreau constitutive model. The computation codes are successfully developed to achieve particle tracking using the fourth-order Runge–Kutta scheme. Distributive mixing is evaluated in terms of the evolution of tracer particles and Poincaré sections. Dispersive mixing is then examined in terms of shear rates, mixing index, distribution probability function of mixing index, and its integral function for particles tracking with time. For the same pressure drop and the same screw rotating speed, when compared to the conventional single screw, the numerical simulation results showed that the screw with staggered plow-shaped baffles achieved better distributive mixing with the output nearly unchanged while three rows of plate baffles significantly enhanced both distributive and dispersive mixing at the cost of output reduction by 13.2%.

Abstract Image

不同内挡板对单螺杆挤出机混合增强的数值模拟
对工业规模单螺杆挤出机的计量段进行了建模,提出了两种不连续挡板、三排板式挡板和两种犁形挡板,以交错或平行的方式布置,以改善分配和分散混合。考虑到螺杆与机筒间隙较窄,采用有限元法结合网格叠加技术求解全三维等温流场,并假设流体服从Carreau本构模型。成功开发了四阶龙格-库塔格式的粒子跟踪计算程序。根据示踪粒子和poincarcars剖面的演化来评价分布混合。然后从剪切速率、混合指数、混合指数的分布概率函数及其随时间跟踪的积分函数等方面考察了分散混合。在压降相同、螺杆转速相同的情况下,与传统的单螺杆相比,设置交错犁形挡板的螺杆在产量基本不变的情况下,获得了更好的分布混合效果,而设置三排板状挡板的螺杆在产量降低13.2%的情况下,均显著提高了分布混合和分散混合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信