{"title":"A New Perspective on Defining Dynamic Origin-Destination Data and Predicting it Using Deep Learning Methods","authors":"Wei-Ting Sung, Jin-Yuan Wang","doi":"10.1049/itr2.70068","DOIUrl":null,"url":null,"abstract":"<p>The prediction of dynamic origin-destination (OD) data is critical for facilitating real-time traffic management across traffic networks. Despite numerous efforts to integrate the temporal and spatial characteristics of OD data to capture the nonlinearity and high dynamics of traffic flow, prior studies usually rely on link-level or region-level data for model construction. The temporal relationships among origin traffic flow, destination traffic flow, and OD flow remain insufficiently understood. To address this gap, we propose a novel definition of dynamic OD data using real-world OD datasets. Our framework can incorporate different temporal distributions for each OD pair. Additionally, the framework ensures flow conservation from either the origin or the destination perspective. The performance of the proposed framework is validated through numerical studies using real-world electronic toll collection (ETC) gantry data. A multi-task long short-term memory (LSTM) model predicts OD flows, and both the predictions and the resulting destination traffic distributions are statistically indistinguishable from the observed values. Furthermore, this approach enables the prediction of arrival volumes before trip completion, offering valuable insights for real-time traffic management.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of dynamic origin-destination (OD) data is critical for facilitating real-time traffic management across traffic networks. Despite numerous efforts to integrate the temporal and spatial characteristics of OD data to capture the nonlinearity and high dynamics of traffic flow, prior studies usually rely on link-level or region-level data for model construction. The temporal relationships among origin traffic flow, destination traffic flow, and OD flow remain insufficiently understood. To address this gap, we propose a novel definition of dynamic OD data using real-world OD datasets. Our framework can incorporate different temporal distributions for each OD pair. Additionally, the framework ensures flow conservation from either the origin or the destination perspective. The performance of the proposed framework is validated through numerical studies using real-world electronic toll collection (ETC) gantry data. A multi-task long short-term memory (LSTM) model predicts OD flows, and both the predictions and the resulting destination traffic distributions are statistically indistinguishable from the observed values. Furthermore, this approach enables the prediction of arrival volumes before trip completion, offering valuable insights for real-time traffic management.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf