MarIns3D: An open-vocabulary 3D instance segmentation model with mask refinement

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haiyang Li, Jinhe Su, Dong Zhou, Mengyun Cao
{"title":"MarIns3D: An open-vocabulary 3D instance segmentation model with mask refinement","authors":"Haiyang Li,&nbsp;Jinhe Su,&nbsp;Dong Zhou,&nbsp;Mengyun Cao","doi":"10.1016/j.neucom.2025.131018","DOIUrl":null,"url":null,"abstract":"<div><div>Open-vocabulary 3D instance segmentation has gained significant attention due to its potential role in scene perception. Existing methods typically involve two stages: generating class-agnostic 3D instance masks using segmentation models, followed by semantic classification of these masks. However, poor classification performance often stems from low-quality masks in the first stage. This paper proposes two key components to optimize the mask generation process: a dynamic offset module and a projection consistency loss. By dynamically adjusting sampling point positions, query points can capture key scene features to generate high-quality masks. Then the projection consistency loss compares these 3D instance masks with ground truth in 2D projections to refine them, improving segmentation accuracy. Experimental results on the ScanNetV2 validation set show that MarIns3D outperforms SOLE on zero-shot segmentation, with a 1.8 % and 1.7 % improvement in AP25 and AP50, respectively, and also demonstrates enhanced open-set segmentation capabilities. These results confirm our model’s superior mask quality and segmentation performance. Furthermore, ablation studies verify that the synergy between the dynamic offset module and the projection consistency loss is crucial for these enhancements.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131018"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122501690X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Open-vocabulary 3D instance segmentation has gained significant attention due to its potential role in scene perception. Existing methods typically involve two stages: generating class-agnostic 3D instance masks using segmentation models, followed by semantic classification of these masks. However, poor classification performance often stems from low-quality masks in the first stage. This paper proposes two key components to optimize the mask generation process: a dynamic offset module and a projection consistency loss. By dynamically adjusting sampling point positions, query points can capture key scene features to generate high-quality masks. Then the projection consistency loss compares these 3D instance masks with ground truth in 2D projections to refine them, improving segmentation accuracy. Experimental results on the ScanNetV2 validation set show that MarIns3D outperforms SOLE on zero-shot segmentation, with a 1.8 % and 1.7 % improvement in AP25 and AP50, respectively, and also demonstrates enhanced open-set segmentation capabilities. These results confirm our model’s superior mask quality and segmentation performance. Furthermore, ablation studies verify that the synergy between the dynamic offset module and the projection consistency loss is crucial for these enhancements.
MarIns3D:一个开放词汇的3D实例分割模型
开放词汇三维实例分割因其在场景感知中的潜在作用而受到广泛关注。现有的方法通常包括两个阶段:使用分割模型生成与类别无关的3D实例掩码,然后对这些掩码进行语义分类。然而,分类性能差往往源于第一阶段口罩质量不高。本文提出了优化掩码生成过程的两个关键组件:动态偏移模块和投影一致性损失模块。通过动态调整采样点的位置,查询点可以捕获关键场景特征,生成高质量的蒙版。然后,投影一致性损失将这些3D实例掩模与2D投影中的地面真值进行比较,以改进它们,提高分割精度。在ScanNetV2验证集上的实验结果表明,MarIns3D在零射击分割上优于SOLE,在AP25和AP50上分别提高了1.8 %和1.7 %,并且还展示了增强的开集分割能力。这些结果证实了我们的模型具有优越的掩码质量和分割性能。此外,消融研究证实,动态偏移模块和投影一致性损失之间的协同作用对这些增强至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信