RAG-Driven Memory Architectures in Conversational LLMs—A Literature Review With Insights Into Emerging Agriculture Data Sharing

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nur Arifin Akbar;Rahool Dembani;Biagio Lenzitti;Domenico Tegolo
{"title":"RAG-Driven Memory Architectures in Conversational LLMs—A Literature Review With Insights Into Emerging Agriculture Data Sharing","authors":"Nur Arifin Akbar;Rahool Dembani;Biagio Lenzitti;Domenico Tegolo","doi":"10.1109/ACCESS.2025.3589241","DOIUrl":null,"url":null,"abstract":"Despite significant advances in natural language processing, conversational AI systems face persistent challenges in maintaining extensive and contextually coherent dialogues, particularly regarding long-term memory management. This literature review synthesizes current approaches to memory architectures in conversational AI, examining the transition from basic dialogue agents to more sophisticated, agentic frameworks. We analyze how vector databases and Retrieval-Augmented Generation (RAG) address fundamental challenges in storing and retrieving conversational context, maintaining system responsiveness, managing user-specific data ethically, and integrating domain-specific information. Through systematic review of papers, we identify critical limitations of vector embedding in capturing extended conversational context, particularly in agentic domains requiring semantic, episodic, procedural, and emotional memory. We evaluate how RAG frameworks can augment vector databases to handle memory-intensive tasks requiring real-time updates and domain-specific knowledge integration. Furthermore, we examine alternative architectures including knowledge graphs, finite state machines, and hybrid solutions, highlighting the data quality and ethical challenges that must be addressed for scalable, reliable AI memory management. Our analysis provides a structured framework for understanding memory evolution in conversational AI, identifies gaps in current RAG solutions, proposes hybrid memory designs, and outlines future research directions emphasizing cross-domain applications in agriculture.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"123855-123880"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11080430/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advances in natural language processing, conversational AI systems face persistent challenges in maintaining extensive and contextually coherent dialogues, particularly regarding long-term memory management. This literature review synthesizes current approaches to memory architectures in conversational AI, examining the transition from basic dialogue agents to more sophisticated, agentic frameworks. We analyze how vector databases and Retrieval-Augmented Generation (RAG) address fundamental challenges in storing and retrieving conversational context, maintaining system responsiveness, managing user-specific data ethically, and integrating domain-specific information. Through systematic review of papers, we identify critical limitations of vector embedding in capturing extended conversational context, particularly in agentic domains requiring semantic, episodic, procedural, and emotional memory. We evaluate how RAG frameworks can augment vector databases to handle memory-intensive tasks requiring real-time updates and domain-specific knowledge integration. Furthermore, we examine alternative architectures including knowledge graphs, finite state machines, and hybrid solutions, highlighting the data quality and ethical challenges that must be addressed for scalable, reliable AI memory management. Our analysis provides a structured framework for understanding memory evolution in conversational AI, identifies gaps in current RAG solutions, proposes hybrid memory designs, and outlines future research directions emphasizing cross-domain applications in agriculture.
会话llms中ragd驱动的内存架构-对新兴农业数据共享的见解的文献综述
尽管在自然语言处理方面取得了重大进展,但会话人工智能系统在维持广泛和上下文连贯的对话方面面临着持续的挑战,特别是在长期记忆管理方面。这篇文献综述综合了当前会话人工智能中内存架构的方法,研究了从基本对话代理到更复杂的代理框架的转变。我们分析了矢量数据库和检索增强生成(RAG)如何解决存储和检索会话上下文、维护系统响应性、合乎道德地管理用户特定数据以及集成特定领域信息方面的基本挑战。通过对论文的系统回顾,我们确定了向量嵌入在捕获扩展会话上下文方面的关键局限性,特别是在需要语义、情景、程序和情感记忆的代理领域。我们评估了RAG框架如何增强矢量数据库来处理需要实时更新和特定领域知识集成的内存密集型任务。此外,我们还研究了包括知识图、有限状态机和混合解决方案在内的替代架构,强调了数据质量和道德挑战,这些挑战必须解决可扩展、可靠的人工智能内存管理。我们的分析为理解会话人工智能中的记忆进化提供了一个结构化框架,确定了当前RAG解决方案中的差距,提出了混合记忆设计,并概述了强调农业跨领域应用的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信